

Calcined Neuburg Siliceous Earth in polyamides 6 and 66

Author: Petra Zehnder

Contents

- Introduction
- Experimental
- Results
 - Polyamide 6
 - Polyamide 66
- Summary
- Appendix: Summary tables

Status Quo

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

APPENDIX

- Polyamides are used in a multitude of application areas, above all in the automotive and electrical industries.
- Important properties are apart from easy processing high surface quality, high stiffness and toughness, low warpage as well as good dimensional stability at elevated temperatures.
- Mineral fillers, also combined with glass fibers, are often added in order to achieve certain properties.
- Calcined clays or wollastonite with block-like grain shape are fillers typically used in parts with low warpage.

Objective

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

APPENDIX

Improving polyamide compounds by using Aktifit AM in place of conventional competitive fillers with particular focus on

» Flow

» Mechanical properties

- Heat deflection
- Hardness
- Tensile modulus
- Tensile strength
- Tensile strain at break
- Impact Strength
- » Graying of black parts

Compounding Injection Molding

Composition
Compounding
Injection molding of test specimen acc. to ISO 1874

omposition	60 % Polyamide 40 % Mineral filler	
ompounding	Twin screw extruder ZSK 30 no predrying of filler Output: approx. 6 kg/h)
jection molding test specimen cc. to ISO 1874	Mold acc. to ISO 294 Mold temperature: Melt temperature PA 6: Melt temperature PA 66: Flow front speed:	80 °C 260 °C 305 °C 200 mm/s

Fillers and Characteristics

NTRODUCTION				Calcined clay		Calci Neut Siliceou	ned ourg s Earth
EXPERIMENTAL RESULTS			Grade 1	Grade 2	block-like particle structure	Silfit Z 91	Aktifit AM
SUMMARY	Color value L* (0	CIELAB)	96.3	96.0	96.7	95.1	95.1
APPENDIX	Color value a* (0	CIELAB)	-0.1	-0.4	-0.2	-0.2	-0.2
	Color value b* (0	Color value b* (CIELAB)			1.0	1.0	1.0
	Particle size d ₅₀	[µm]	3.8	3.4	3.4	1.9	1.9
	Particle size d ₉₇	[µm]	13	14	14	10	10
	Oil absorption	[g/100g]	68	61	33	60	61
	Specific surface area BET	[m²/g]	5.8	9.1	3.6	7.4	6.6
	Sieve residue > 40 µm	Sieve residue > 40 µm [mg/kg]		44	28	8	21
	Functionalization	٦	An	nino	Amino	none	Amino
	VM-2/0510/09 2014						F

Calcined Neuburg Siliceous Earth

A downstream thermal process leads to the calcined products Silfit and Aktifit, based on SILLITIN Z 86.

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

APPENDIX

Neuburg Siliceous Earth

Calcination Process

Calcined Neuburg Siliceous Earth

Additional application benefits, as well as the removing of crystal water included in the kaolinite. The silica part remains inert.

Selection

Polyamide 6

Durethan[®] B 31 SK
black-colored

® registered trademark of LANXESS

Polyamide 66

Ultramid[®] A3K
natural-colored

ha		1

[®] registered trademark of BASF

Schulamid[®] 66 MV 2
natural-colored

(only summary tables)

[®] registered trademark of A. Schulman Inc.

Ball Indentation Hardness

DIN EN ISO 2039-1; H961N/30s

Tensile Modulus

DIN EN ISO 527-1,-2; 0.5 mm/min INTRODUCTION GPa 2 **EXPERIMENTAL** 0 4 6 8 **RESULTS** Aktifit AM • Polyamide 6 SUMMARY Calcined clay 1 **APPENDIX** Calcined clay 2 Wollastonite Silfit Z 91 VM-2/0510/09.2014 12

Tensile Strength

DIN EN ISO 527-1,-2; 5 mm/min

Tensile Strain at Break

	Impact Stren Izod 23 °C	ngth			ERAL
	DIN EN ISO 180/	ΊU			
INTRODUCTION			k l / m ²		
EXPERIMENTAL	0	50	100	150	200
<u>RESULTS</u>					
• Polyamide 6	AKTITIT AM				
SUMMARY	Calcined				
APPENDIX	clay 1				
	Calcined				
			_		
	Wollastonite				
	-				
	Silfit Z 91				
	VM-2/0510/09.2014				16

L

Black Coloring

without Graying

RESULTS

Performance PA 6

Ball Indentation Hardness

DIN EN ISO 2039-1; H961N/30s

Tensile Modulus

DIN EN ISO 527-1,-2; 0.5 mm/min INTRODUCTION GPa 2 **EXPERIMENTAL** 0 4 6 8 **RESULTS** Aktifit AM • Polyamide 66 SUMMARY Calcined clay 1 **APPENDIX** Calcined clay 2 Wollastonite Silfit Z 91

VM-2/0510/09.2014

Tensile Strength

DIN EN ISO 527-1,-2; 5 mm/min

Tensile Strain at Break

	Impact Stren Izod 23 °C	gth			
	DIN EN ISO 180/L	J			
INTRODUCTION			k l / m²		
EXPERIMENTAL	0	50	100	150	200
<u>RESULTS</u>					
• Polyamide 66	AKUIILAM				
SUMMARY	Calcined				
APPENDIX	clay 1				
	Calcined				
	Wollastonite				
	-				
	Silfit Z 91				
	VM-2/0510/09.2014				29

INTRODUCTION

EXPERIMENTAL

RESULTS

Polyamide 66

SUMMARY

APPENDIX

Results obtained with polyamide 6 show that the tested clays led to a clearly noticeable lighter color or graying of black-colored compounds, respectively.

With Aktifit AM, this was **not** the case.

This has also been observed in earlier studies on black-colored polyamide 66 compounds

forward to Black Coloring in PA 6

INTRODUCTION

EXPERIMENTAL

RESULTS

Polyamide 66

SUMMARY

APPENDIX

The tests were carried out with a second grade of polyamide 66:

Schulamid[®] 66 MV 2

The ranking of the fillers was the same as with Ultramid[®] A3K.

Summary tables can be found in the appendix.

U

forward to summary tables

Performance PA 66

Summary

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

APPENDIX

Compared to other fillers suitable for low-warpage parts, Aktifit AM offers the following benefits:

- High melt flow rate
- Comparable heat deflection
- Similar tensile strength
- No graying of black-colored compounds
- Very high tensile strain at break
- Excellent impact strength, even at low-temperature
- Low-temperature impact strength very often higher than with competitive fillers at room temperature (PA 66)

We supply material for good ideas!

HOFFMANN MINERAL GmbH Muenchener Straße 75 DE-86633 Neuburg (Donau) Phone: +49 8431 53-0 Internet: www.hoffmann-mineral.de E-mail: info@hoffmann-mineral.com

Our applications engineering advice and the information contained in this memorandum are based on experience and are made to the best of our knowledge and belief, they must be regarded however as non-binding advice without guarantee. Working and employment conditions over which we have no control exclude any damage claim arising from the use of our data and recommendations. Furthermore we cannot assume any responsibility for patent infringements, which might result from the use of our information.

VM-2/0510/09.2014

Summary Table (1) Durethan B 31 SK dry-as-molded

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

APPENDIX

		Calcined clay		Wollastonite	Calc Neu Siliceou	ined burg ıs Earth
		Grade 1	Grade 2	block-like particle structure	Silfit Z 91	Aktifit AM
Melt Volume-flow rate	cm ³ /10 min	77	73	69	91	98
Heat distortion temperature HDT/B	°C	189	188	187	182	184
Ball Indentation Hardness	MPa	218	217	204	230	221
Tensile Modulus	GPa	6.0	6.2	5.8	5.7	5.4
Tensile Strength	MPa	87	87	84	86	83
Tensile Strain at Break	%	7.2	7.5	5.6	3.6	10.4
Impact Strength Izod	kJ/m²	70 C	79 C	66 C	62 C	120 C
Impact Strength23 °CCharpy-30 °C	kJ/m²	98 C 66 C	100 C 72 C	87 C 74 C	85 C 70 C	125 C 74 C
Notched Impact23 °CStrength Charpy-30 °C	kJ/m²	3.8 C 3.3 C	3.9 C 3.2 C	3.7 C 3.1 C	3.4 C 2.6 C	4.9 C 3.6 C

VM-2/0510/09.2014

Summary Table (2) Durethan B 31 SK conditioned

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

APPENDIX

		Calcined clay		Wollastonite	Calc Neu Siliceou	ined burg ıs Earth	
			Grade 1	Grade 2	block-like particle structure	Silfit Z 91	Aktifit AM
Tensile Modulus		GPa	2.0	2.1	1.8	1.9	1.8
Tensile Strength		MPa	52	48	44	31	52
Tensile Strain at B	reak	%	18	10 ¹⁾	25	19	30
Impact Strength Charpy	23 °C	kJ/m²	314 C	17 C ¹⁾	236 C	105 C	Ν
Notched Impact Strength Charpy	23 °C	kJ/m²	6.0 C	3.2 C ¹⁾	4.1 C	3.2 C	6.7 C

¹⁾ After conditioning, the results of clay 2 were inexplicably low.

Summary Table (3) Ultramid A3K dry-as-molded

		Calcin	ed clay	Wollastonite	Calc Neu Siliceou	tined burg us Earth
		Grade 1	Grade 2	block-like particle structure	Silfit Z 91	Aktifit AM
Melt Volume-flow rate	cm ³ /10 min	54	60	78	70	74
Vicat Softening Point	°C	244	245	241	243	243
Heat distortion tempera HDT/B	°C	229	230	224	220	221
Ball Indentation Hardne	ess MPa	268	267	253	275	273
Tensile Modulus	GPa	6.2	6.3	5.9	5.9	5.8
Tensile Strength	MPa	94	95	91	89	92
Tensile Strain at Breal	x %	4.0	6.3	4.7	3.2	9.8
Impact Strength Izod	kJ/m²	65 C	78 C	75 C	59 C	133 C
Impact Strength23Charpy-30	°C °C kJ/m²	88 C 66 C	100 C 84 C	89 C 79 C	77 C 74 C	172 C 125 C
Notched Impact23Strength Charpy-30	°C °C kJ/m²	4.2 C 3.7 C	4.3 C 3.8 C	3.8 C 3.5 C	3.6 C 3.1 C	6.3 C 3.9 C

RESULTS

INTRODUCTION

EXPERIMENTAL

SUMMARY

APPENDIX

VM-2/0510/09.2014

Summary Table (4) Ultramid A3K conditioned

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

APPENDIX

		Calcine	ed clay	Wollastonite	Calc Neul Siliceou	ined burg ıs Earth	
			Grade 1	Grade 2	block-like particle structure	Silfit Z 91	Aktifit AM
Ball Indentation Hardness		MPa	125	119	117	119	114
Tensile Modulus		GPa	3.2	3.2	2.9	2.8	2.7
Tensile Strength		MPa	65	66	56	41	64
Tensile Strain at B	reak	%	13	18	15	11	25
Impact Strength Charpy	23 °C	kJ/m²	191 C	239 C	161 C	84 C	460 C
Notched Impact Strength Charpy	23 °C	kJ/m²	5.9 C	5.8 C	4.4 C	3.5 C	7.7 C

Summary Table (5) Schulamid 66 MV 2 dry-as-molded

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

APPENDIX

		Calcin	ed clay	Wollastonite	Calc Neu Siliceou	ined burg ıs Earth
		Grade 1	Grade 2	block-like particle structure	Silfit Z 91	Aktifit AM
Melt Volume-flow rate	cm ³ /10 min	47	45	57	54	59
Heat distortion temperat HDT/B	^{lre} °C	221	223	215	218	214
Ball Indentation Hardne	ss MPa	232	218	209	237	234
Tensile Modulus	GPa	6.2	6.2	5.8	5.7	5.6
Tensile Strength	MPa	90	92	88	86	86
Tensile Strain at Break	%	4.7	7.4	4.5	3.1	8.5
Impact Strength Izod	kJ/m²	71 C	79 C	73 C	66 C	134 C
Impact Strength23Charpy-30	°C °C kJ/m²	97 C 69 C	103 C 84 C	84 C 74 C	88 C 81 C	159 C 108 C
Notched Impact23Strength Charpy-30	°C °C kJ/m²	4.1 C 3.7 C	4.1 C 3.8 C	3.9 C 3.7 C	3.7 C 3.4 C	6.0 C 4.2 C

VM-2/0510/09.2014

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

APPENDIX

		Calcine	ed clay	Wollastonite	Calc Neu Siliceou	ined burg ıs Earth	
			Grade 1	Grade 2	block-like particle structure	Silfit Z 91	Aktifit AM
Tensile Modulus		GPa	2.6	2.7	2.3	2.4	2.3
Tensile Strength		MPa	60	62	53	38	60
Tensile Strain at B	reak	%	18	21	16	17	28
Impact Strength Charpy	23 °C	kJ/m²	242 C	288 C	186 C	108 C	N (455 C)
Notched Impact Strength Charpy	23 °C	kJ/m²	6.0 C	6.2 C	5.4 C	3.6 C	9.1 C

back to selection

