

Calcined Neuburg Siliceous Earth in adhesives with high strength based on silane terminated polyurethane (STP-U)

Author: Petra Zehnder

Contents

- Introduction
- Experimental
- Results
 - Rheology
 - Curing
 - Mechanical Properties
 - Adhesive Strength
- Summary
- Appendix

Status Quo

INTRODUCTION

- EXPERIMENTAL
- RESULTS
- SUMMARY
- APPENDIX

- Apart from the widely introduced silicone and polyurethane systems, also hybrid prepolymers based on silane terminated polyurethanes (STP-U) offer themselves for the preparation of sealants and adhesives.
- They combine the benefits of a polyurethane base structure with a silane based curing mechanism.
 - The formulations prepared are non-hazardous with respect to health and environment and are distinguished by outstanding mechanical properties along with excellent adhesion characteristics.
 - The standard filler here is calcium carbonate, and for highly demanding adhesives in preference precipitated calcium carbonate (PCC) with a higher specific surface area.

Objective

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

APPENDIX

This study will present Calcined Neuburg Siliceous Earth grades as functional fillers for high strength adhesives based on silane terminated polyurethanes.

The objective was to improve the strength of the adhesive and take advantage of this effect for upgrading traditional compounds formulated with the established filler calcium carbonate.

Basis: Guide formulation BBB 7507 from Covestro

		parts or % by weight
Desmoseal S XP 2821	Polymer: silane terminated polyurethane	38.88
Irganox 1135	Antioxidant	0.46
Bayferrox Gelb 415	Pigment	0.28
Cab-O-Sil TS 720	Rheological additive: fumed silica	0.95
Filler		53.71
Dynasylan VTMO	Drying agent: vinyl silane	2.61
DBU	Catalyst: diazabicycloundecene	0.11
Dynasylan 1146	Adhesion promoter: amino silane	1.50
Dynasylan AMEO	Adhesion promoter: amino silane	1.50
Total		100.00
VM-2/0217/02.2019		5

EXPERIMENTAL

INTRODUCTION

RESULTS

SUMMARY

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

		PCC	Calcined Neuburg Siliceous Earth			
			Silfit Z 91	Aktifit PF 111	Aktifit PF 115	
Volatile matter at 105 °C	%	0.5	0.2	0.2	0.1	
Oil absorption	g/100g	44	55	49	59	
Specific surface area BET	m²/g	11	8	7	8	
Functionalisation				Alkyl	Special amino	
Surface character		hydrophilic	hydrophilic	hydrophobic	hydrophobic	

RESULTS

SUMMARY

APPENDIX

Moisture Content of Fillers vs. Ambient Air Humidity

HOFFMANN **Complex Viscosity** MINERAL DIN 54458 INTRODUCTION 0.1 % Deformation 850 % Deformation **EXPERIMENTAL** 1.000 **RESULTS** SUMMARY 800 **APPENDIX** Pa*s 600 400 200 0 PCC Silfit Z 91 Aktifit Aktifit PF 111 PF 115

In-depth Cure

Thickness of the reacted layer after 24 h

RESULTS

INTRODUCTION

EXPERIMENTAL

SUMMARY

Hardness Shore D

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

Tensile Strength

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

Tear Resistance Graves

DIN ISO 34-1, method B(b)

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

APPENDIX

Lap Shear Strength Beech Wood

DIN EN 205, after 7 d, layer thickness 0.1 mm

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

APPENDIX

Summary

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

APPENDIX

The PCC grade used for the class of precipitated calcium carbonates already represents the optimum with respect to mechanical properties that can be realized.

In comparison, Calcined Neuburg Siliceous Earth shows:

- Significant lower viscosity at higherer deformation, thereby easier application
- Viscosity at low deformation / yield point variably adjustable
- High hardness
- Increased tensile strength of up to 14 MPa
- Marked increase of lap shear strength, more than 16 MPa are possible

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

- Silfit Z 91 Low moisture content, white and color-neutral, cost effective, good mechanical properties
- Aktifit PF 115 Very low moisture content and extremely low moisture absorption even under humid conditions, white and color-neutral, for highest requirements on tensile strength and lap shear strength
- Aktifit PF 111 Very low moisture content and very low moisture absorption even under humid conditions, white and color-neutral, rheology control along with high strength, high elongation at break and high tear resistance

We supply material for good ideas!

HOFFMANN MINERAL GmbH Muenchener Straße 75 DE-86633 Neuburg (Donau) Phone: +49 8431 53-0 Internet: www.hoffmann-mineral.de E-mail: info@hoffmann-mineral.com

Our applications engineering advice and the information contained in this memorandum are based on experience and are made to the best of our knowledge and belief, they must be regarded however as non-binding advice without guarantee. Working and employment conditions over which we have no control exclude any damage claim arising from the use of our data and recommendations. Furthermore we cannot assume any responsibility for patent infringements, which might result from the use of our information.

Preparation of Batches

• Planetary mixer

- INTRODUCTION
- EXPERIMENTAL
- RESULTS
- SUMMARY
- <u>APPENDIX</u>

- Discolver disc, bar blade r
- Dissolver disc, bar blade and scraper
- Batch size approx. 500 ml
- · Feed polymer, pigment and antioxidant
- Stir in rheological additive
- Stir in (undried) filler
- Add drying agent and catalyst

Disperse under vacuum:

- 5 min at 3000 rpm and 600 rpm
- 10 min at 1000 rpm and 300 rpm
- 5 min at 800 rpm and 300 rpm

Cool down to <60 °C

Add both adhesion promoters

Disperse under vacuum:

- 15 min at 1000 rpm and 300 rpm
- Fill into cartridge

INTRODUCTION EXPERIMENTAL	Rheology	DIN 54458, MCR 300, PP 25 mm, d: 0.5 mm, Oscillation: deformation 0.01 to 100 %, f = 10 Hz			
RESULTS	Hardness Shore D	DIN ISO 7619-1, piled S2 specimens Curing / conditioning: 4 weeks @ standard conditions 23/50			
APPENDIX	Tensile test	DIN 53504, S2 specimens Curing / conditioning: 4 weeks @ standard conditions 23/50			
	Tear resistance Graves	DIN ISO 34-1, method B (b) Curing / conditioning: 4 weeks @ standard conditions 23/50			
	Lap shear test	DIN EN 205 Substrate Adhesive layer: Curing: Crosshead speed:	beech wood 0.1 mm 7 d @ standard conditions 23/50 50 mm/min		
	VM-2/0217/02.2019			18	

Table of Results

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

<u>APPENDIX</u>

		PCC	Calcined Neuburg Siliceous Earth		
			Silfit Z 91	Aktifit PF 111	Aktifit PF 115
Rheology Complex viscosity at 0.1 % deformation Complex viscosity at 50 % deformation	Pa*s Pa*s	626 418	227 155	931 130	222 143
<u>Curing</u> Skin formation In-depth cure after 8 h In-depth cure after 24 h	min mm mm	25 1.4 2.3	45 1.2 2.1	25 1.3 2.2	35 1.3 2.1
Mechanical properties Hardness Tensile strength Elongation at break Tear resistance Graves	Shore D MPa % N/mm	47 10.6 38 11.4	51 14.2 20 7.3	49 12.6 30 12.9	51 14.1 22 8.5
<u>Lap shear strength</u> Beech wood, layer 0.1 mm	MPa	12.0	13.9	14.3	16.7