

Neuburg Siliceous Earth in UV-curing wood coatings: Transparent primer

Author: Petra Zehnder

Contents

INTRODUCTION

EXPERIMENTAL

RESULTS

- Introduction
- Experimental
- Results
- Summary

EXPERIMENTAL

RESULTS

SUMMARY

Annual growth has been running at around 10 to 20 % with these systems since the beginning of the 90's due to the increased demand for environmental tolerability (solvent-free) and good mechanical characteristics of UV varnishes.

Basic structure of UV-curing parquet coatings

INTRODUCTION

EXPERIMENTAL

RESULTS

Surfacer Amount used: Filler content:	50 g/m² 30-40 %	removes unevennessavoids sharp outlinesprevents discoloration
		 high-quality silicate fillers are essential
Primer		 application after sanding
Amount used:	15-20 g/m²	 influence on mechanical properties
Filler content:	10-15 %	 addition of small amounts of talc is recommended
Top Coat (clear coat)		 provides a high gloss, smooth surface
Film thickness:	some µm	
No filler		

Objective

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

The objective of the present study was to demonstrate the advantages of Neuburg Siliceous Earth over competitive fillers in relation to

- optical properties
- abrasion resistance

in an UV-curing transparent parquet primer.

EXPERIMENTAL

RESULTS

SUMMARY

Base Formulation

Parts by weight

	Control no filler	with filler
Laromer PO 84 F amine group-containing polyether acrylate	100	100
Filler	-	10
Omnirad 500 1-Hydroxy-cyclohexyl-phenyl-ketone and Benzophenone (1:1)	3	3
Total	103	113

EXPERIMENTAL

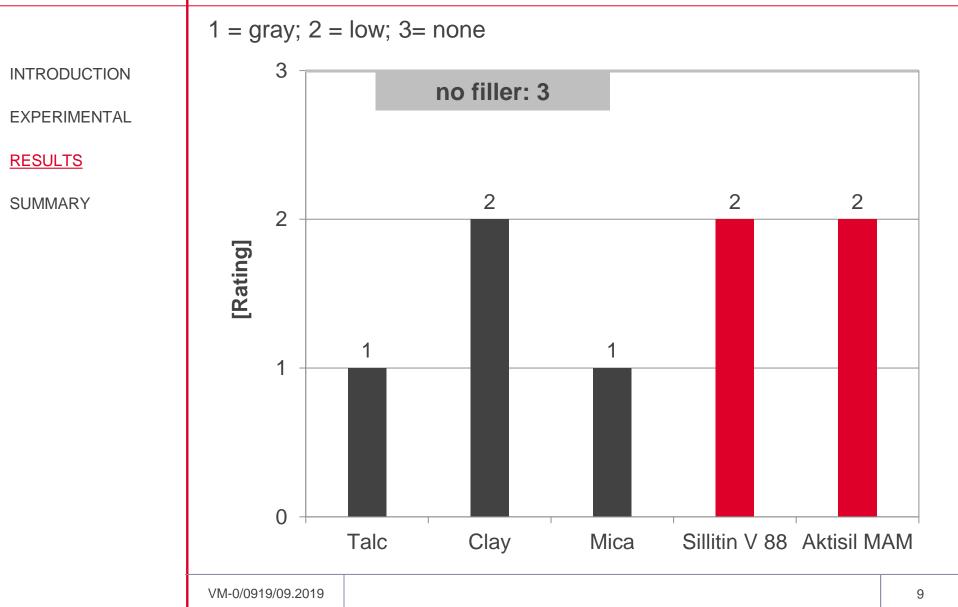
RESULTS

SUMMARY

	Talc	Clay	Mica	Sillitin V 88	Aktisil MAM
Mineral Description	Mg-silicate + Magnesite	Al-silicate	Muscovite mica	Silica/ Kaolinite	Silica/ Kaolinite
Grain Shape	lamellar	lamellar	lamellar	corpuscular aggregates and lamellar	corpuscular aggregates and lamellar
Particle Size d ₅₀ [µm]	4.5 *	4.8 *	10 *	4	4
Particle Size d ₉₇ [µm]	20 *		35 *	18	18
Oil Absoption [g/100 g]	40 *	32 *	50-52 *	45	45
Density [g/cm ³]	2,9	2,6	2,8	2,6	2,6
Functionalisation	none	none	none	none	Methacrylic

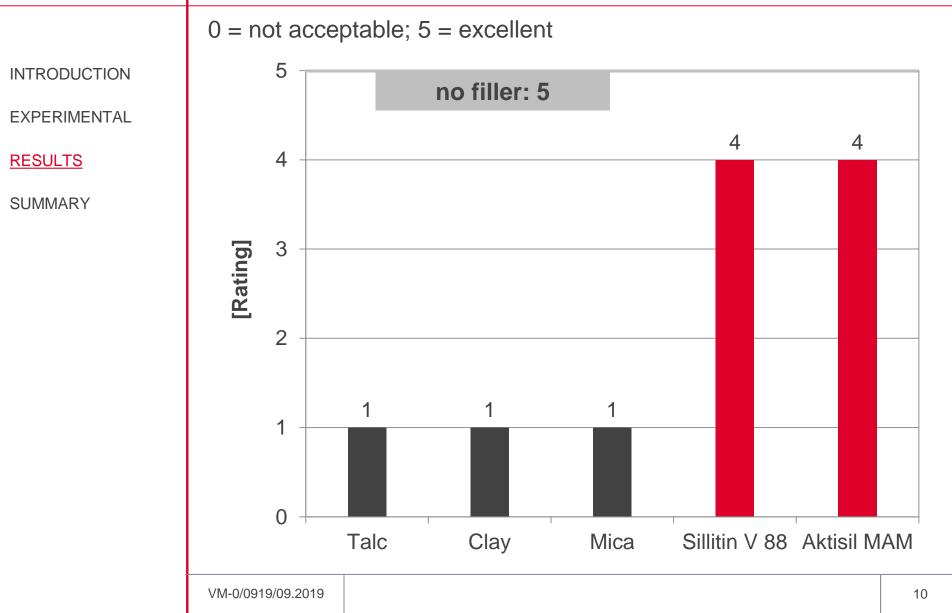
* manufacturer information

Sedimentation

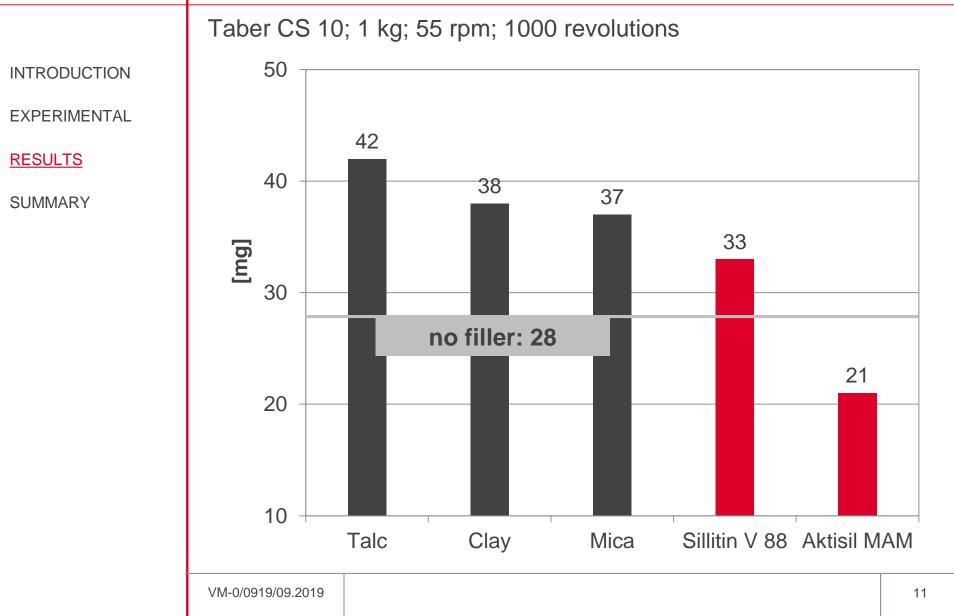

EXPERIMENTAL

RESULTS

	after 1 d	after 7 d
Talc	no	no
Clay	no	yes
Mica	no	yes
Sillitin V 88	yes	yes
Aktisil MAM	no	no



Transparency of the Film



Abrasion Loss

Summary

Compared to widely used competitive fillers, Neuburg Siliceous Earth offers:

- low inherent color of the varnish
- good film transparency
- lower sedimentation tendency with Aktisil MAM
- improved abrasion resistance with Aktisil MAM

Aktisil MAM is an optimal filler in transparent UV-curing parquet primers for dark and light woods.

The sandability by machine is maintained.

Nevertheless, if there is a need for a higher sanding removal, this can be achieved by adding a small amount of talc.

INTRODUCTION

EXPERIMENTAL

RESULTS

EXPERIMENTAL

RESULTS

SUMMARY

- Sillitin V 88 good prive/performance ratio, cost-effective
- Aktisil MAM reduced sedimentation, improved abrasion resistance

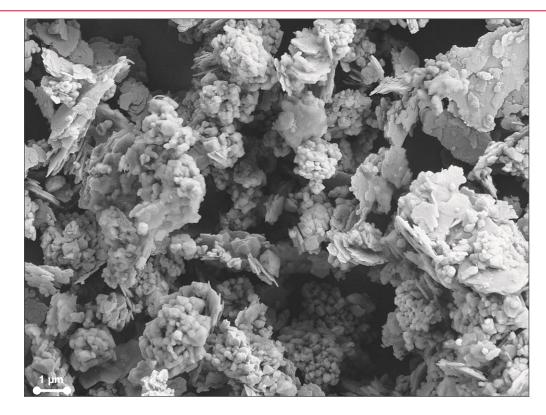
Not tested, but additionally recommended:

- Silfit Z 91 similar to Sillitin V 88, but with highest color neutrality, best dispersion properties, higher gloss
- Aktifit Q same as Silfit Z 91, but with lower viscosity and improved abrasion resistance
- Aktifit VM same as Aktifit Q, but improved hiding power in white pigmented coatings without UV-curing problems
- Sillitin Z 89 same as Sillitin V 88, but with lower color neutrality, higher viscosity, reduced sedimentation, higher gloss
- Sillitin Z 89 puriss same as Sillitin Z 89, but with improved dispersion
- Aktisil VM 56/89 same as Sillitin Z 89, but with improved abrasion resistance

•

We supply material for good ideas!

HOFFMANN MINERAL GmbH Muenchener Straße 75 DE-86633 Neuburg (Donau) Phone: +49 8431 53-0 Internet: www.hoffmann-mineral.de E-mail: info@hoffmann-mineral.com

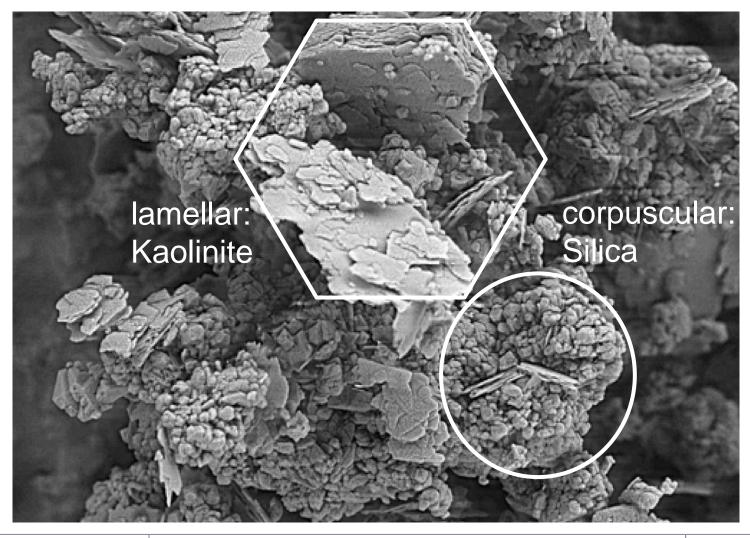

Our applications engineering advice and the information contained in this memorandum are based on experience and are made to the best of our knowledge and belief, they must be regarded however as non-binding advice without guarantee. Working and employment conditions over which we have no control exclude any damage claim arising from the use of our data and recommendations. Furthermore we cannot assume any responsibility for patent infringements, which might result from the use of our information.

VM-0/0919/09.2019

Structure

A natural combination of corpuscular Neuburg silica and lamellar kaolinite: a loose mixture impossible to separate by physical methods.

The silica portion exhibits a round grain shape and consists of aggregated primary particles of about 200 nm diameter.


VM-0/0919/09.2019

Morphology of Neuburg Siliceous Earth

Magnification 10.000x

