

Neuburg Siliceous Earth –
Sandability and Corrosion Protection
for Water-based Primer-Surfacer for Trains, 2C Epoxy, yellow

Author: Bodo Essen

Contents

- Introduction
- Experimental
- Results
 - Processing and mechanical properties
 - Sandability by machine / manually
 - Corrosion test
 - Cost Index
- Summary
- Appendix

Status Quo

- The use of water-based formulations is required for environmental reasons and is subject to complex requirements in terms of design, functionality or weathering stability.
- The often applied multi-layer coating structure and the slower drying properties compared to solvent-based systems, however, represent time-consuming and energy-intensive process steps.
- To compensate for this, a more economical, faster to process coating concept would be desirable, in particular early and quick sanding properties.
- Ideally, the contribution to the level of corrosion protection required for the application is retained or even improved.

Objective

Is the well-known positive effect of Neuburg Siliceous Earth on drying behavior and sandabitity exploitable to apply coatings with aqueous paints more efficiently?

Assessment of the performance of

- Barium sulfate ppt
- Talc
- Aktisil AM
- Aktifit AM

Base formulation: Primer-Surfacer for trains, water-based, 2C EP

Major requirements: Sandability and corrosion protection

Base formulation

	Component A		parts by weight [pbw]
	Water demineralized		15.1
ste	Additol VXW 6208	dispersing additive	3.3
paste	Additol VXW 6393	defoamer	0.1
ent	Kronos 2190	pigment, white	8.0
Pigment	Bayferrox 3920	pigment, yellow	2.5
<u> </u>	Bayferrox 130	pigment, red	0.03
	Filler	varied	X
	Additol VXW 6393	defoamer	0.05
	Texanol	solvent	0.6
	Additol VXW 6388	rheology modifier	0.6
	Methoxypropanol	solvent	1.0
	Beckocure EH 2261w/41WA	aliph. polyamine adduct dispersion, HEW 1100 g/mol	24.2
	TACorr MSW	org. corrosion inhibitor	2.0
	flashpro TAC C4E	flash rust inhibitor	0.4
	Water demineralized		1.4
	Total		59.3 + x
	Component B		
	Beckopox EP 387w/52WA	solid epoxy resin dispersion, EEW 1000 g/mol	41.3
	Water demineralized		4.6
	Total		45.9
	Total A + B		105.2 + x
	Stoichiometric crosslinking ratio amin/epox	У	0.53

Fillers and Combinations

	Control with ba	rium sulfate ppt	Replacement of filler				
		Filler	substitution by equal volume				
[pbw]		Dosage increased	+ Talc	NSE* + Talc		NSE pure	
Barium sulfate ppt	45	75	50				
Talc			15	15	15		
Aktisil AM				30		44	
Aktifit AM					30		
PVC [%]	32	42	constant				

i Filler characteristics

Structure of NSE* = Neuburg Siliceous Earth

Final Formulations

		P'	VC 32 %	PVC 42 %					
Component A [pbw]		Control Barium sulfate ppt			+ Talc	A	ktisil AM + Talc	Aktifit AM + Talc	Aktisil AM
Water demineralized			15.1	17.5	19.1		30.5	30.5	32.0
Additives / Pigments		paste	13.93	13.93	13.93		13.93	13.93	13.93
Barium sulfate ppt		nt pa	45	75	50	aste			
Talc		Pigment			15	nt pa	15	15	
Aktisil AM	Aktisil AM					Pigment p	30		44
Aktifit AM						Pig		30	
Additol VXW 6393			0.05	0.05	0.05		0.05	0.05	0.05
Texanol			0.6	0.6	0.6		0.6	0.6	0.6
Additives / Hardener			28.2	28.2	28.2		28.2	28.2	28.2
Water demineralized			1.4						
			104.3	135.3	126.9		118.3	118.3	118.8
Component B					45	.9			
Total A + B			150.2	181.2	172.8		164.2	164.2	164.7
Solida content [0/]	w/w		59.9	66.4	63.7		54.8	54.8	54.3
Solids content [%]	v/v		41.4	44.7	43.9		39.8	39.8	39.5

Preparative Methods

Processing and Mechanical Properties

Viscosity Component A	i	stable	changing	changing	stable	stable	stable	
Storage stability i modera		moderate	poor	poor	good	moderate	very good	
Viscosity Component A + B	i	low	very high	very high	moderate	low	high	
Pendulum hardness	i		comparable		higher			
Adhesion	on i							
		Barium sulfate ppt	Barium sulfate ppt	Barium sulfate ppt + Talc	Aktisil AM + Talc	Aktifit AM + Talc	Aktisil AM	
		PVC 32 %	•		PVC 42 %		•	

Sandability by Machine – Rotation / fast

at 500 revolutions min	1					
Pre-drying 16 h 23 °C	0	1	1	2 - 3	3 - 4	2
+ 2 h 60 °C Convection drier	1 2 $3 - A$			Filler s 3 - 4	2	
at 2000 revolutions min more critical: stronger						
Pre-drying 16 h 23 °C	0	0	1	2 - 3	3 - 4	2
+ 2 h 60 °C Convection drier	1 7 3		4	Optir 4 4 - 5		3
	Barium sulfate ppt	Barium sulfate ppt	Barium sulfate ppt + Talc	Aktisil AM + Talc	Aktifit AM + Talc	Aktisil AM
	PVC 32 %	•		PVC 42 %		•

Assessment of amount of removable fine dust:

0 = not sandable, 5 = ideal sandable

Procedure and detailed results

Sandability manually – Lateral Strokes / slow

at 50 double strokes 1 double hub s ⁻¹									
Pre-drying 2 h 40 °C Convection drier	0	1	0 - 1	1	2	3			
16 h 23 °C	0	2	1 - 2	2 - 3	3	4 Optimum			
+ 2 h 60 °C Concection drier	3	3 - 4	3	4	4 - 5	5			
	Barium sulfate ppt	Barium sulfate ppt	Barium sulfate ppt + Talc	Aktisil AM + Talc	Aktifit AM + Talc	Aktisil AM			

PVC 32 % PVC 42 % —

Assessment of amount of removable fine dust:

0 = not sandable, 5 = ideal sandable

Procedure and detailed results

Sandability by Machine / manually – Overal Rating

Barium sulfate ppt → unsatisfactory

- higher rotational speed / additional convective drying phase practically ineffective
- acceptable results require manual sanding at higher load weight and additional higher drying temperatures

Combination with Talc → only useful with restrictions

- > in machinery grinding test: additional drying time at 60°C convection needed to improve poor sandability and to reduce dust sticking
- in manual grinding: stronger lubricating effect and worser result than with pure barium sulfate, even after additional short forced drying

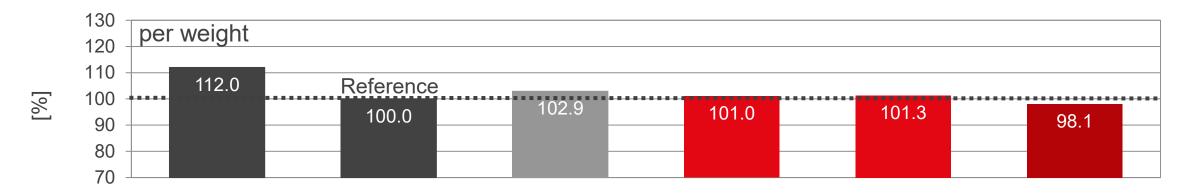
Neuburg Siliceous Earth → for best results

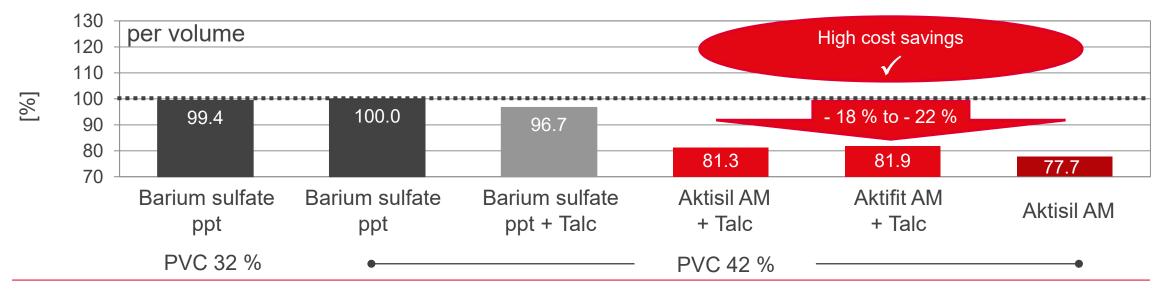
- better sanding at early stage of drying
- for machine grinding with maximum effect: Talc + Aktifit AM
- for manual sanding at higher weight load: Aktisil AM pure

Corrosion Test – Assessment after 300 h Salt Spray Test

Barrier protection non-scribed area									
Adhesion 24 h	very poor	poor	good - very good	very good	good – very good	good			
0 h = Wet adhesion	= Wet adhesion very poor very poor		good	√ very good	moderate	good - moderate			
Blistering resistance < 72 h		< 72 h	< 72 h	> 300 h	> 300 h	> 300 h			
Corrosion resistance	Corrosion resistance very low very low low					very high = Optimum			
Protection at scribe Sikk	kens								
Delamination	> 40 mm	10 mm	6 mm	< 2 mm	< 2 mm	< 2 mm			
Blistering- / Corrosion resistance	moderate		low	high	high	high			
	Barium sulfate ppt	Barium sulfate ppt	Barium sulfate ppt + Talc	Aktisil AM + Talc	Aktifit AM + Talc	Aktisil AM			
	PVC 32 %	•		PVC 42 %		•			

Q-Panel R 48, DFT 80 μm


Procedure and detailed results



Cost Index

Reference wet paint = 100 % (Germany 2021)

Results (1)

Barium sulfate ppt

- easy processability but causes lack of viscosity stability and sedimentation stability during storage
- Sandability and corrosion protection proves insufficient

Combination with Talc

- speeds up sedimentation tendency and hard sediment formation
- > acceptable sandability requires fast grinding speed under low weight load and extended drying time
- > Improvement in poor anti-corrosion performance limited to better adhesion and lower delamination at scribe. Strong blistering tendency remains and leads to metal corrosion.

Results (2)

Neuburg Siliceous Earth grades boost performance level

- very good storage stability when using Aktisil AM
- faster hardness build-up after paint application
- improved sandability with Aktisil AM and Aktifit AM despite higher water content of formulation
- excellent, easier and earlier sandability whether for machine grinding (Talc + Aktifit AM) or for manual sanding (Aktisil AM used alone)
- > short forced drying further improves non-stick behavior to sandpaper.
- > much better corrosion resistance and thus significantly longer protection period in non-scribed area (no blistering or metall corrosion)
- Lowest delamination at scribe
- Outstanding paint adhesion even under corrosive conditions (Talc + Aktisil AM)

Customer Benefits

Aktisil AM and Aktifit AM overcome existing drawbacks of typically used fillers in water-based primer-surfacer coatings:

- Enhanced sandability
 - ✓ More efficient, earlier or at lower drying temperature
 - ✓ More productive faster coating process

Reduced sticking to sandpaper

- ✓ Longer lasting grinding performance and service life of paper
- ✓ Saving of maintenance work, waste as well as material cost
- Improved corrosion protection
 - ✓ Higher performance and durability of the coating
 - ✓ No active anti-corrosive pigment needed
- Further savings
 - ✓ Resources (lower raw material dosage)
 - ✓ Formulation costs

Starting Formulations – Parts by Weight

Con	nponent A	[1]	[2]	[3]	
	Water demineralized	29.1	29.1	29.1	_ [
	Additol VXW 6208	3.3	3.3	3.3	
4)	Additol VXW 6393	0.1	0.1	0.1	
paste	Kronos 2190	8.0	8.0	8.0	
ра	Bayferrox 3920	2.5	2.5	2.5	
Pigment I	Bayferrox 130	0.03	0.03	0.03	
	Talc	15	15		
o ig	Aktisil AM	30		44	[2
-	Aktifit AM		30		
	Additol VXW 6393	0.05	0.05	0.05	
	Texanol	0.6	0.6	0.6	
	Additol VXW 6388	0.6	0.6	0.6	
	Methoxypropanol	1.0	1.0	1.0	
	Beckocure EH 2261w/41WA	24.2	24.2	24.2	
	TACorr MSW	2.0	2.0	2.0	[,
	flashpro TAC C4E	0.4	0.4	0.4	
	Total	118.3	118.3	118.8	
Com	ponent B				
	Beckopox EP 387w/52WA	41.3	41.3	41.3	
	Water demineralized	4.6	4.6	4.6	
	Total	45.9	45.9	45.9	
Tota	I A + B	164.2	164.2	164.7	
Stoic	hiometric crosslinking ratio amin/epoxy	0.53 / Solids content w/	w 55 % / PVC 42 %		

- good sandability, markedly prolonged corrosion protection with outstanding surface adhesion
- [2] effective sandability for machine grinding at high rotation speed, good corrosion protection
- [3] Best rheological and sedimentation stability during storage, sandability at early stage, predominantly for manual sanding process, good corrosion protection

If corrosion protection is of less importance, good sandability results are also available with NSE grade Sillitin Z 86.

We supply materials for good ideas!

HOFFMANN MINERAL GmbH Muenchener Straße 75 DE-86633 Neuburg (Donau)

18

Phone: +49 8431 53-0

Internet: www.hoffmann-mineral.com E-mail: info@hoffmann-mineral.com

Our applications engineering advice and the information contained in this memorandum are based on experience and are made to the best of our knowledge and belief, they must be regarded however as non-binding advice without guarantee. Working and employment conditions over which we have no control exclude any damage claim arising from the use of our data and recommendations. Furthermore we cannot assume any responsibility for patent infringements, which might result from the use of our information.

Further Information

- Details of test methods and results with pictures
 - Preparative Methods
 - Processing and mechanical properties
 - Sandability by machine / manually
 - Corrosion test
- Structure of Neuburg Siliceous Earth
- Filler Characteristics

Preparative Methods

Mixing

Component A

- Pigment paste: Dissolver with toothed disc (Cowles Blade) 30 min at 8.0 m/s, ice water cooling
- Addition of remaining ingredients at 4.0 m/s
 (Additol VXW 6388 and methoxypropanol premixed)

Component B

Mixing of blend of epoxy binder and water with component A for 2 min at paddle mixer

Application

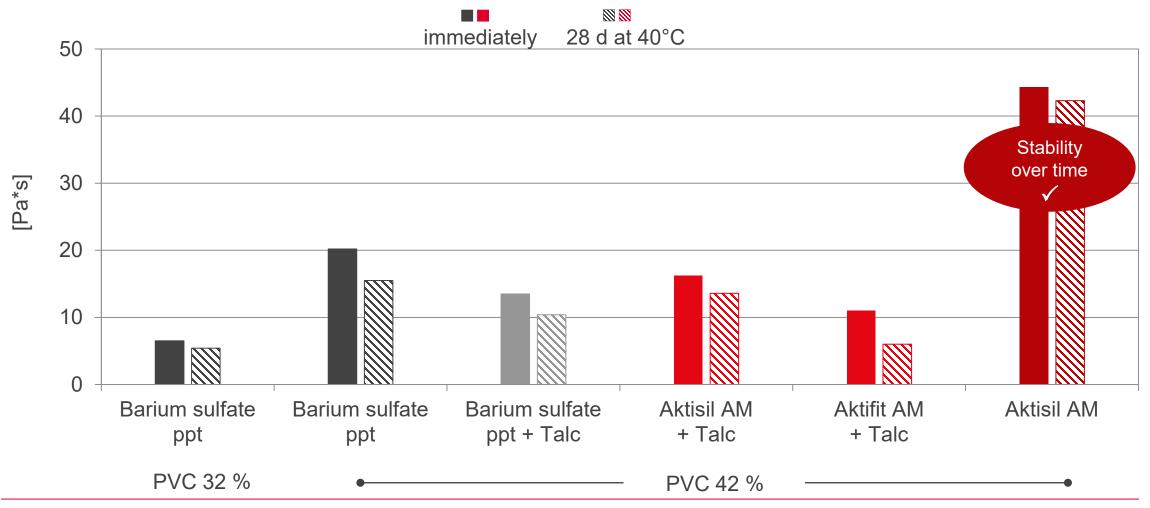
Substrate: cold rolled steel Q-Panel Type R 48

Single-Layer: undiluted with doctor blade 12 mm/s on automated film applicator

dry film thickness ~ 80 μm

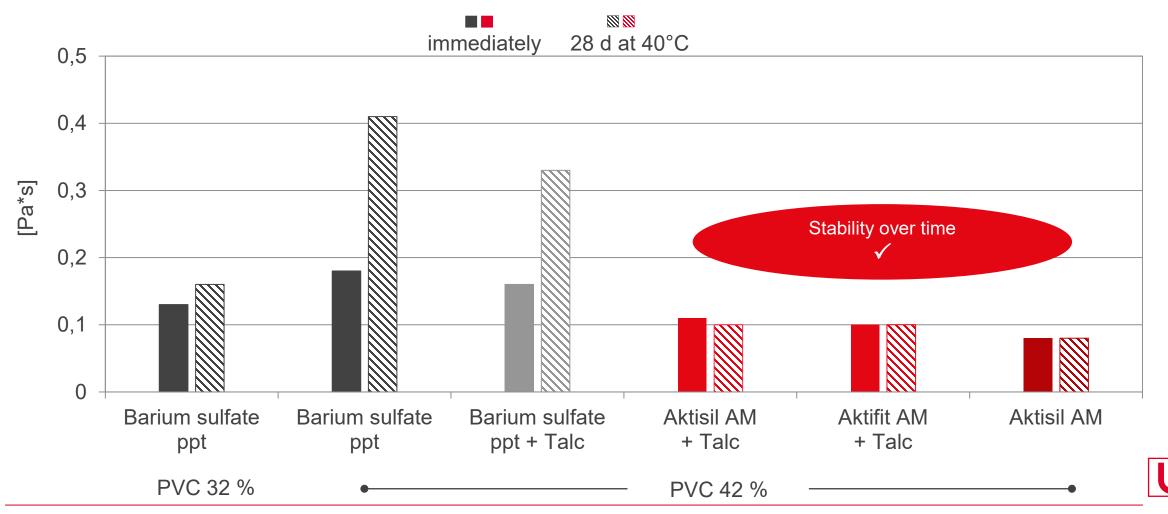
Conditioning

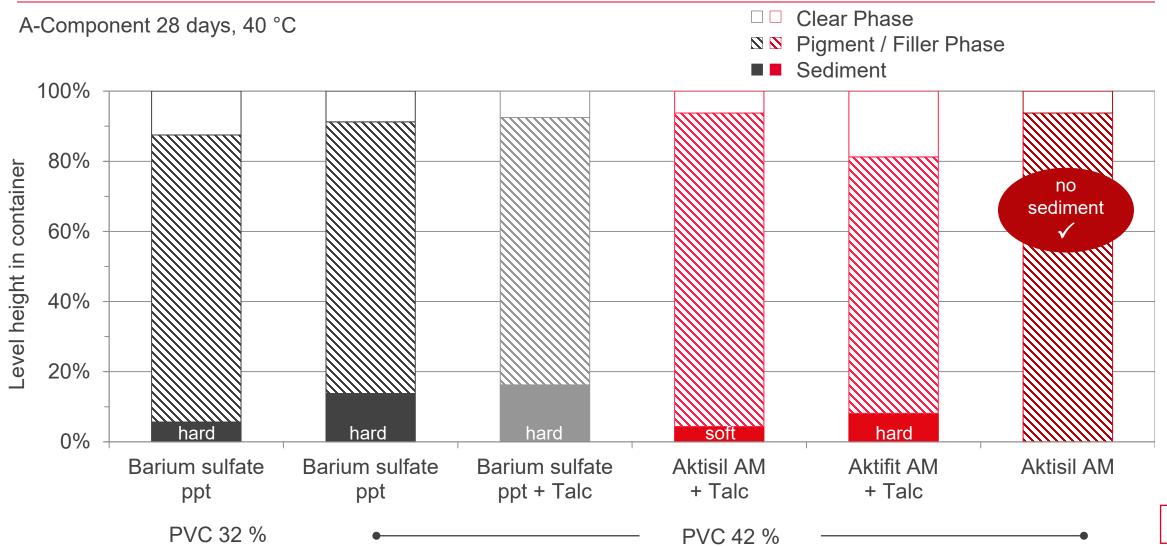
Drying at 23°C / 50 % relative humidity


- Pendulum hardness, sandability: varied times
- Adhesion, corrosion test: 7 days

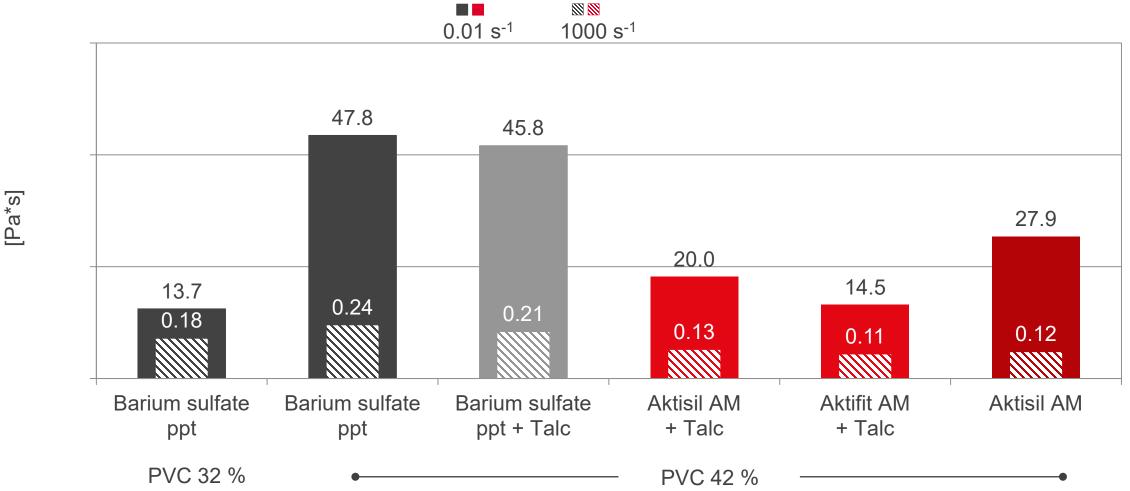
Viscosity A-Component and "Rheological Stability over time"





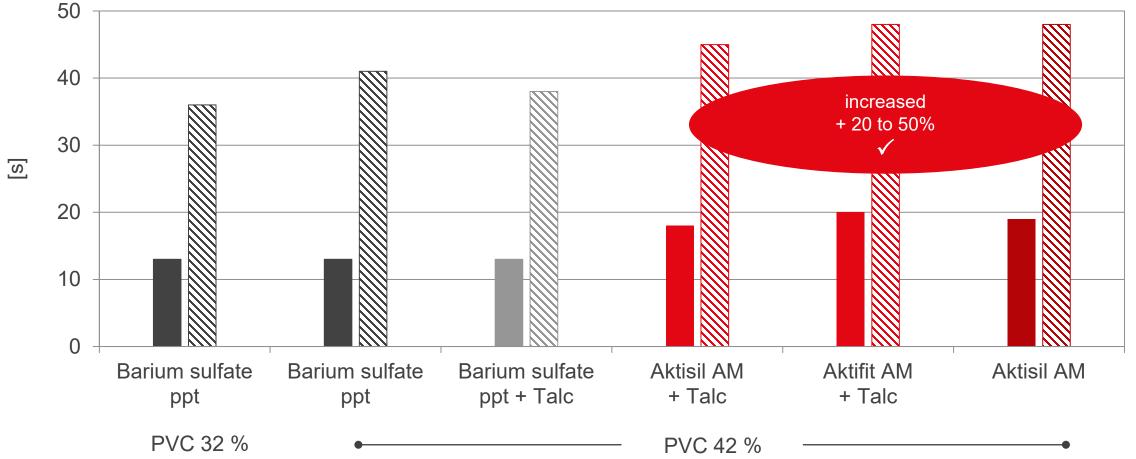

Viscosity A-Component and "Rheological Stability over time"

Storage Stability



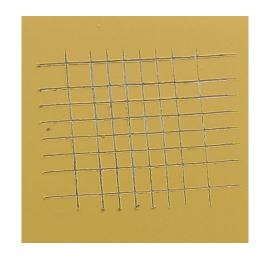
Viscosity Component A+B

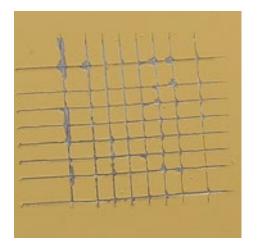
At low and high shear rate MCR 300 / CC17 / 23 °C



Pendulum Hardness

■■ 16 h 23°C / 50% RH
■■ 7 d 23°C / 50% RH





Adhesion

Cross-cut test 2 mm, tape tear-off - Dry film thickness 80 μ m

Excellent rating range: all Variants GT ≤ 1



Sandability by Machine – Polish Test Bench

- ✓ Close to industrial procedure
- ✓ Qualitative + Quantitative

Testing conditions:

- > Dry grinding without dust suction
- > Sandpaper grit P240
- High speed rotation
 500 or 2000 revolutions / min
 + lateral strokes 3.5 cm / s
- \triangleright Weight load 100 g = 14 g / cm²

Sandability by Machine – Polish Test Bench

Test Procedure

Coating:

> Dry film thickness 80 μm

Drying: varied

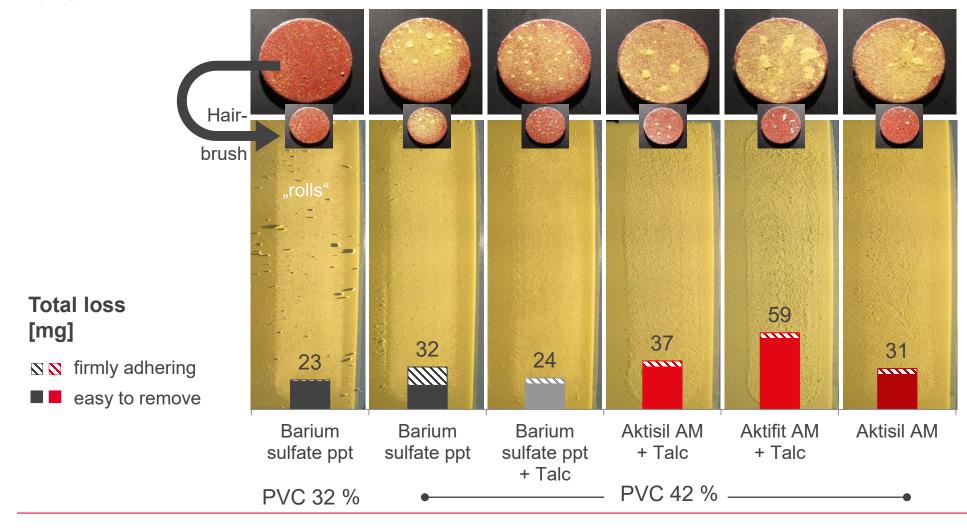
- > 16 h 23°C 50% RH
- > 16 h 23°C 50% RH
 - + 2 h 60°C convection drier

Evaluation: abrasive material loss

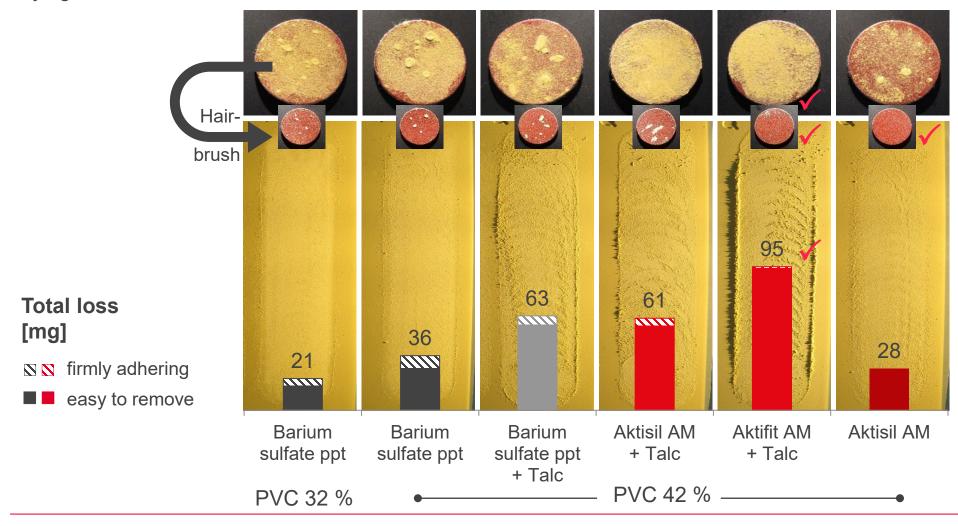
- Quality
- Quantity gravimetrically non-sticking / sticking

Hair brush

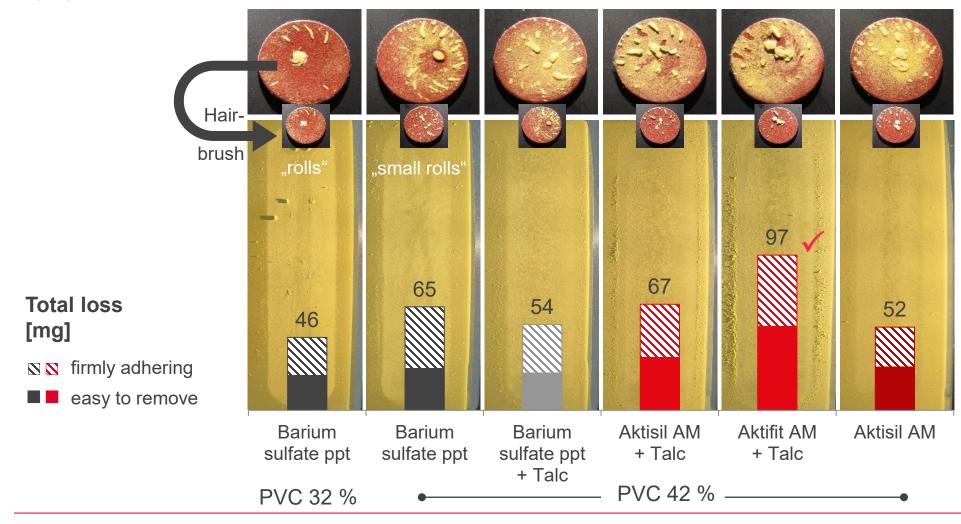
Problem:



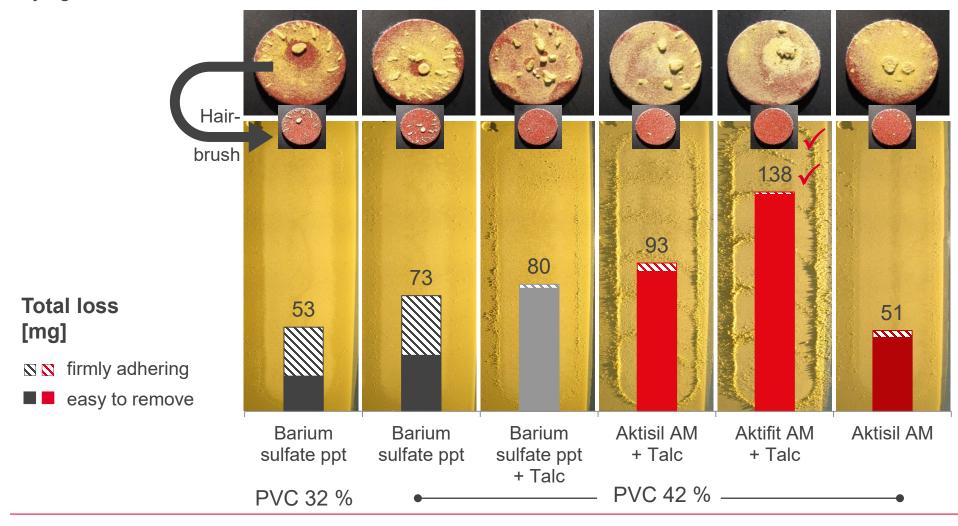
Adhering dust islands reduce grinding power!


Sandability by Machine, 500 rev. min⁻¹

Drying 16 h 23°C


Sandability by Machine, 500 rev. min⁻¹

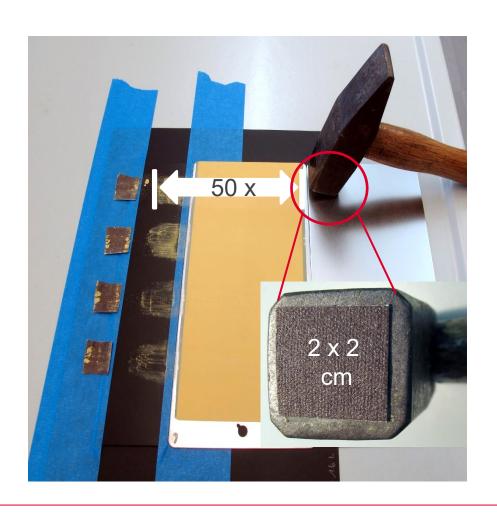
Drying 16 h 23°C + 2 h 60°C convection drier


Sandability by Machine, 2000 rev. min⁻¹

Drying 16 h 23°C

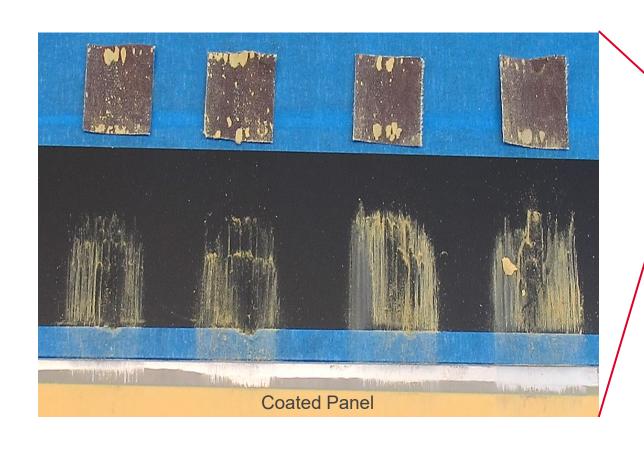
Sandability by Machine, 2000 rev. min⁻¹

Drying 16 h 23°C + 2 h 60°C convection drier



Sandability manually – Hammerhead at higher Load

✓ Laboratory test for quick results


Testing conditions:

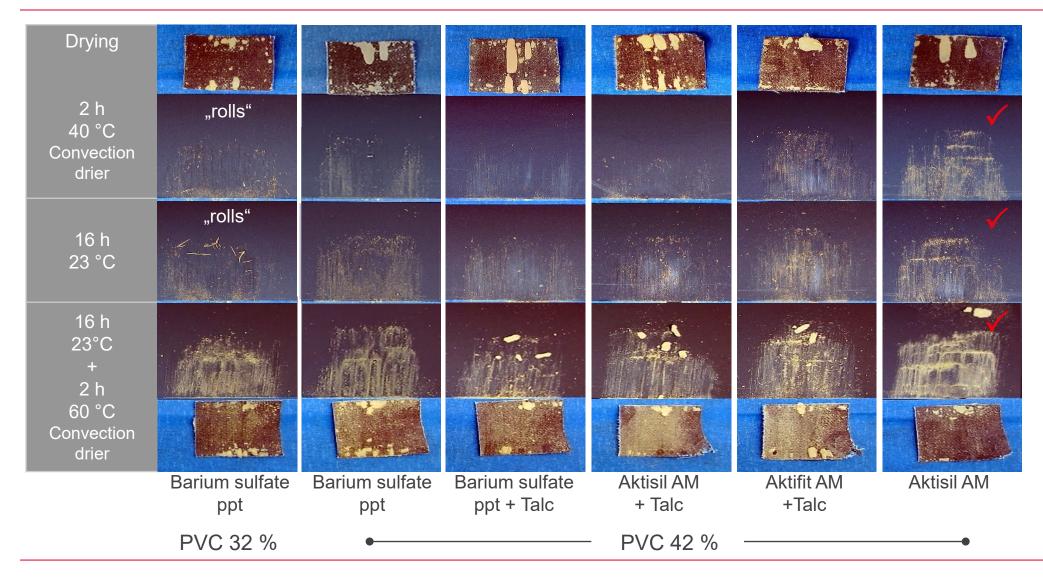
- > Dry grinding without dust suction
- ➤ Sandpaper grit P240
- Low speed 50 double strokes1 double hub / s
- \triangleright Weight load 500 g = 125 g / cm²

Sandability manually – Hammerhead at higher Load

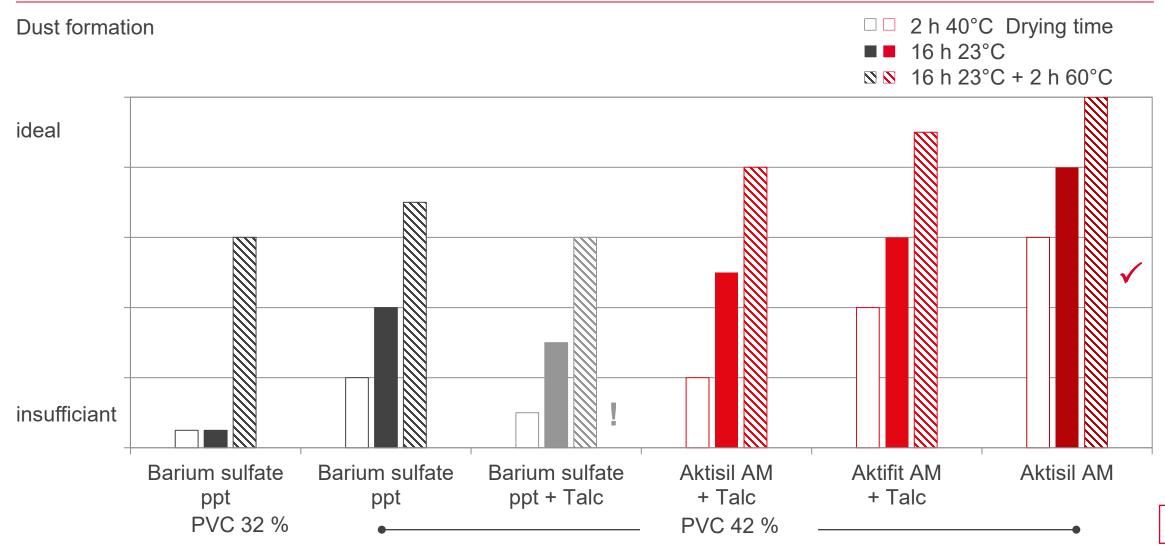
Dry film thickness 80 μm

Drying: varied

- > 2 h 40°C convection drier
- > 16 h 23°C 50% RH
- ➤ 16 h 23°C 50% RH + 2 h 60°C convection drier

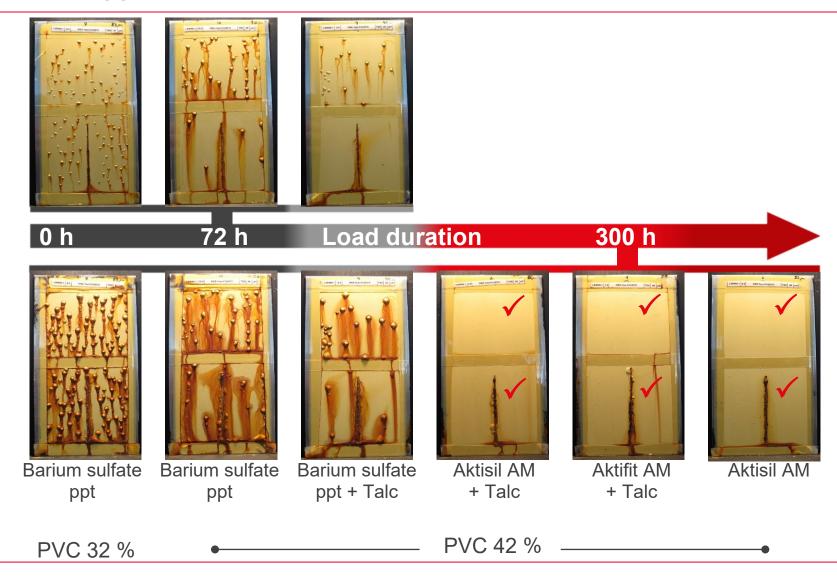

Evaluation:

Abrasive material loss


- Quality
- Quantity, non-sticking

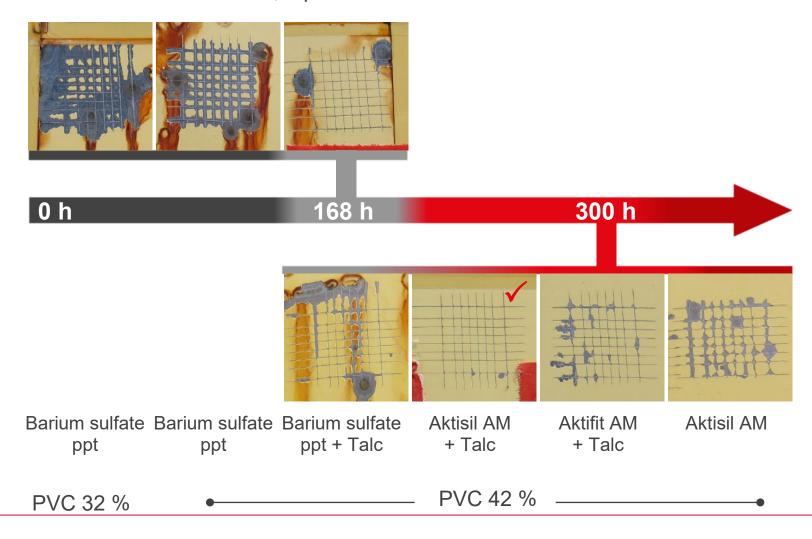
Sandability manually - Visual Performance

Sandability manually – Relative Performance


Corrosion Test

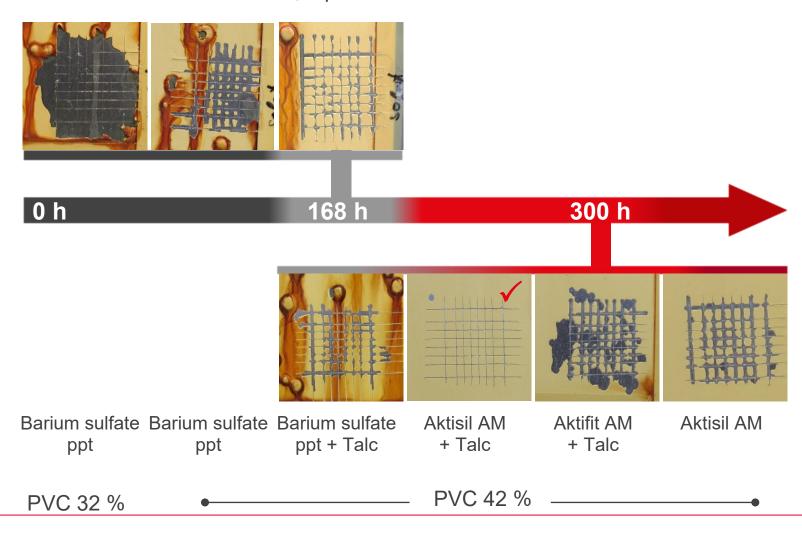
Evaluation criteria

Salt Spray Test			DIN EN ISO 9227 NSS
Non-scribed area	AdhesionBlisteringCorrosion stripped	LODDAL 1 18.4 NOS-Test KNAZYC	10 5 G
Scribed area Sikkens 1 mm width 7 cm long	BlisteringDelaminationCorrosion stripped		

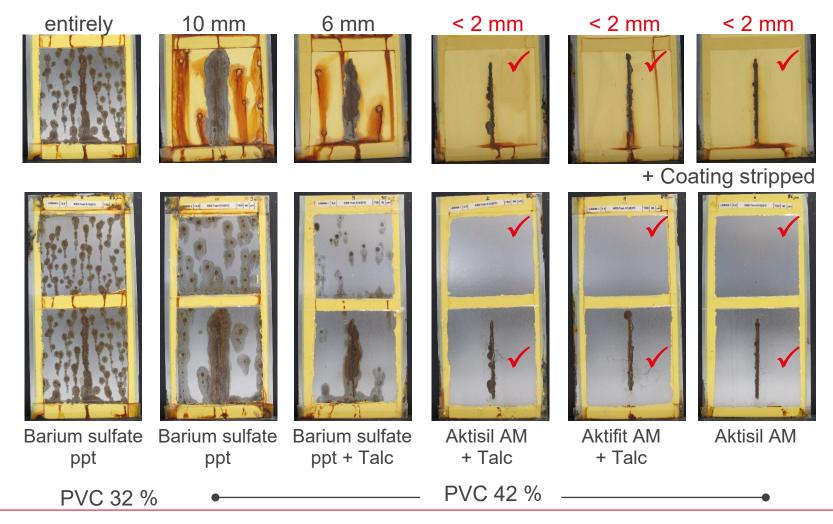


Salt Spray Test – Appearance

Salt Spray Test – Adhesion


24 h regeneration time: Cross-cut test 2 mm, tape tear-off

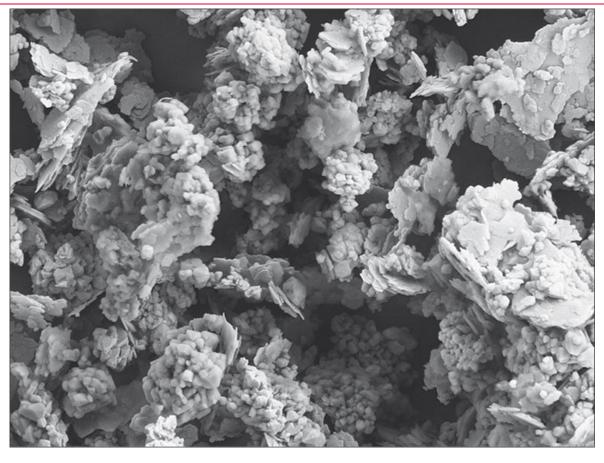
Salt Spray Test – Adhesion


without regeneration time: Cross-cut test 2 mm, tape tear-off

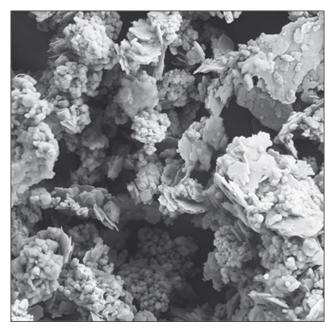
Salt Spray Test – Metall surface 300 h

24 h regeneration time:

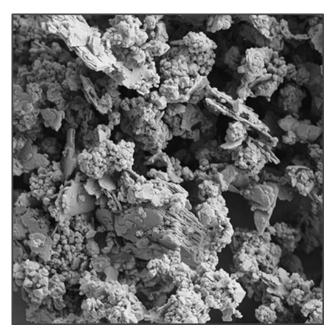
Delamination at scribe



Neuburg Siliceous Earth


A natural combination of corpuscular Neuburg silica and lamellar kaolinite: a loose mixture impossible to separate by physical methods. The silica portion exhibits a round grain shape and consists of aggregated primary particles of about 200 nm diameter.

Calcined Neuburg Siliceous Earth



A downstream thermal process lead to the calcined products SILFIT and AKTIFIT, based on SILLITIN Z 86.

Neuburg Siliceous Earth

Calcination Process

Calcined Neuburg Siliceous Earth

Additional application benefits, as well as the removing of crystal water included in the kaolinite. The silica part remains inert.

Filler Characteristics

	Particle size		Oil absorption	Density	Specific surface BET	Special Features - Surface treatment
	d ₅₀ [µm]	d ₉₇ [µm]	[g/100g]	[g/cm³]	[m²/g]	
Barium sulfate ppt	0.9	3.5	22	4.4	2.7	Organic
Talc	4.4	12.5	62	2.8	8.3	_
Aktisil AM	2.2	10	45	2.6	9.0	Amino functionalized
Aktifit AM	2.0	10	65	2.6	9.0	Calcination + Amino functionalized

