

Silfit Z 91 vs. precipitated calcium carbonate and TiO₂ in high-quality, solvent-free VAE paint

Author: Bodo Essen

Contents

- Introduction
- Experimental
- Results
 - Processing properties and storage stability
 - Viscosity
 - Gloss
 - Wet-scrub resistance
 - Color
 - Hiding power (EU Ecolabel)
 - Cost / Performance calculations
- Summary

EXPERIMENTAL

RESULTS

- Features of modern high-quality interior emulsion paints:
 - Excellent optical properties
 - Very high mechanical resistance and durability
 - Low-emission, free of solvents and plastisizers
- High price level for white pigments like titanium dioxide as a result of increased raw material costs and rise in demand.
- Targeting economical and efficient alternatives without performance loss.
- Titanium dioxide extension by precipitated calcium carbonate is widely used.

Objective

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

Assessment of the performance of the Calcined Neuburg Siliceous Earth grade Silfit Z 91 compared to precipitated calcium carbonate and TiO_2 in an interior VAE emulsion paint:

- 18.5 % Titanium dioxide
- PVC 71 %
- Solids content 63 %
- Solvent-free

Special attention is paid to optical properties as well as resulting formulation costs while evaluating further relevant properties.

Base Formulation

INTRODUCTION

EXPERIMENTAL

RESULTS

		Parts by weight
Water deionized	-	291
Tylose MH 30000 YG8	Thickener	4
Calgon N, 10 % in water	Wetting / Dispersing	5
Lopon 895	Dispersing additive	3
Agitan 315	Defoamer	2
Parmetol MBX	Can preservation	1
Sachtleben RDDI	TiO ₂ Pigment	185
Prec. Calcium Carbonate (PCC)	TiO ₂ Extender	70
Omyacarb 2 GU	Filler	125
Omyacarb 5 GU	Filler	90
Omyacarb 10 GU	Filler	30
Plastorit 00	Filler	40
Agitan 315	Defoamer	2
Sodium hydroxide, 10 % in water	Neutralising agent	2
Mowilith LDM 1871 (VAE)	Emulsion binder	150
Total		1000

Formulation Variations

Variation of the Pigment / TiO₂-Extender package All other formulation ingredients remain unchanged

Full TiO₂ - 20 % - 10 % 166 148 185 Without With compensation for compensation reduced for reduced TiO₂ content TiO₂ content PCC PCC Control Silfit Silfit Silfit Silfit Silfit 1:2 1:2 1:3Precipitated 70 70 70 70 70 ___ Calcium Carbonate Silfit Z 91 70 70 38 57 74 Solids content w/w [%] 63.0 62.3 62.3 63.6 64.3 64.3 63.0 **PVC** [%] 70.7 70.8 70.1 70.3 71.7 72.5 72.7 TiO₂-Extender VM-1/0415/10.2019 6

INTRODUCTION

EXPERIMENTAL

RESULTS

—

Properties

Without Significant Difference

INTRODUCTION

EXPERIMENTAL

RESULTS

Incorporation Pigment / Filler	g	jood to m	oderate	
Foam formation		non	е	
Fineness of grind		35 µ	m	
Storage stability 23°C, 6 months	no phase separation, no settling or sediment			
Viscosity 23°C	Shear rate at	0.1 s ⁻¹ 1000 s ⁻¹	102 - 138 [P 0.36 - 0.45 [P	a*s] a*s]
Gloss	matt, DIN EN	13300	85° < 10	
			Preparation an Testin	d g
VM-1/0415/10.2019				7

Wet-Scrub Resistance

INTRODUCTION

EXPERIMENTAL

RESULTS

Color

INTRODUCTION

EXPERIMENTAL

RESULTS

Hiding Power EU Ecolabel

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

General:

 Identifies products that meet high standards of environmental performance and quality

Criterias relating to interior emulsion paints:

- Spreading rate
 - $\geq 8~m^2$ / liter at contrast ratio 98 %
- Content of white pigments (refractive index ≥ 1.8)
 ≤ 40 g / m² dried paint film at contrast ratio 98 % and wet-scrub resistance class 1

Spreading Rate

at Contrast Ratio 98 %

INTRODUCTION

EXPERIMENTAL

RESULTS

TiO₂-Content per m² at Contrast Ratio 98 %

INTRODUCTION

EXPERIMENTAL

RESULTS

Cost / Performance

Germany 2019 / Contrast Ratio 98 %

INTRODUCTION

EXPERIMENTAL

RESULTS

Summary

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

Silfit Z 91 appears comparable to PCC with respect to:

Equal processing properties, storage stability, color, gloss and wet-scrub resistance

Silfit Z 91 additionally offers:

Marked improvement of hiding power and spreading rates

- More than compensating slightly higher formulation cost
- 10 to 20 % TiO_2 reduction without loosing efficiency whereas significant loss in hiding power with just PCC

Silfit Z 91 gains the following benefits when used as TiO_2 extender:

- Improved performance, even at reduced TiO₂ level
- Real cost cutting potential

White pigment savings and thus contribution to more ecofriendly interior emulsion paints

EXPERIMENTAL

RESULTS

SUMMARY

Starting Formulations

 [1] Very high hiding power / spreading [2] TiO₂-reduction + good hiding powe [3] High cost savings 	rate r	[1]	[2]	[3]	
Water deionized			291		
Tylose MH 30000 YG8		4			
Calgon N, 10 % in water			5		
Lopon 895		3			
Agitan 315		2			
Parmetol MBX			1		
Sachtleben RDDI		185	166	148	
Socal P2			70	70	
Omyacarb 2 GU		125			
Omyacarb 5 GU		90			
Omyacarb 10 GU		30			
Plastorit 00			40		
Agitan 315			2		
Silfit Z 91	70	(38 to) 57	74		
Sodium hydroxide, 10 % in water		2			
Mowilith LDM 1871 (VAE)	150				
Solids content w/w	[%]	70.8	72.5	72.7	
PVC	[%]	63.0	64.3	64.3	

VM-1/0415/10.2019

We supply material for good ideas!

HOFFMANN MINERAL GmbH Muenchener Straße 75 DE-86633 Neuburg (Donau) Phone: +49 8431 53-0 Internet: www.hoffmann-mineral.de E-mail: info@hoffmann-mineral.com

Our applications engineering advice and the information contained in this memorandum are based on experience and are made to the best of our knowledge and belief, they must be regarded however as non-binding advice without guarantee. Working and employment conditions over which we have no control exclude any damage claim arising from the use of our data and recommendations. Furthermore we cannot assume any responsibility for patent infringements, which might result from the use of our information.

VM-1/0415/10.2019

Preparation

INTRODUCTION	Mixing and dispersing	Mixing with dissolver, in sequence of mentioning in the formulation Peripheral speed of toothed disc (Cowles blade) 15 m/s for 20 min, water cooling with T max. = 60°C
RESULTS	Let Down	With Binder and further additives
SUMMARY	Maturation	Over night
	Application	Undiluted with doctor blade on automated film applicator or as indicated
	Substrate	As indicated, depending on testing
	Conditioning	Drying conditions before / during tests: 23 °C / 50 % relative humidity (RH) Drying time before testing: 28 days for wet-scrub resistance, otherwise 7 d

EXPERIMENTAL

RESULTS

SUMMARY

Testing

Paint Preparati	on			
Incorporation,	Subjective assessment			
Foam formation	۱			
Wet Paint				
Fineness of gri	nd Grindometer 0 – 50 µm			
Viscosity	1d after preparation, Rheometer 23°C, Searle system			
Storage stability	y Undiluted in 1I-metal can, 6 months 23°C			
Application with	n doctor blade gap 300 μm on Leneta film, DFT* ~ 170 μm			
Wet-scrub	200 Cycles on automated wet-scrub resistance tester			
resistance	according to ISO 11998.			
	Classification along with DIN EN 13300			
Application: ga	p 100 - 400 µm gradually with doctor blade on cardboard			
Color / Gloss	L*, a*, b* over white, 85°-Gloss (Sheen)			
	at full hiding film with DFT 120 µm			
Hiding Power	Contrast ratio over black/white depending on dry film			
5	thickness. Calculation of minimum dry film thickness to			
	comply with DIN EN 13300 classifications and resulting			
	spreading rates, contrast ratio at given spreading rate			
	respectively			
* Dry film thickness	back			
VM-1/0415/10.2019	18			

EXPERIMENTAL

RESULTS

SUMMARY

	Particle size		Oil Density absorption		Specific C Surface BFT		Color	Color	
	d ₅₀ [µm]	d ₉₇ [µm]	[g/100g]	[g/cm³]	[m²/g]	L*	a *	b*	
Precipitated Calcium Carbonate	0.3	10	26	2.7	8	97.9	0.0	0.6	
Silfit Z 91	2.0	10	55	2.6	8	95.5	- 0.1	0.7	

back	
------	--

VM-1/0415/10.2019