

Facade emulsion paints:

Silfit Z 91 vs. precipitated sodium aluminum silicate

Author: Bodo Essen

Contents

- Introduction
- Experimental
- Results
 - Processing properties and storage stability
 - Viscosity
 - Liquid water permeability and water vapor transmission rate
 - Gloss
 - Wet-scrub resistance
 - Color
 - Hiding power (EU Ecolabel)
 - Cost / Performance calculations
- Summary

INTRODUCTION

EXPERIMENTAL

RESULTS

- Excellent optical appearance as well as demands for resistance and functionality are essential characteristics for modern facade emulsion paints.
- High price level for white pigments like titanium dioxide as a result of increased raw material costs and rise in demand.
- Targeting economical and efficient alternatives without performance loss.
- Titanium dioxide extension by precipitated sodium aluminum silicate is widely used.

Objective

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

Assessment of the performance of the Calcined Neuburg Siliceous Earth grade Silfit Z 91 compared to precipitated sodium aluminum silicate.

Special attention is paid to optical properties as well as resulting formulation costs while evaluating further relevant properties.

Evaluation in European standard emulsion paint for facades based on a styrene acrylic dispersion with:

- 19 % Titanium dioxide
- PVC 50 %
- Solids content 61 %

RESULTS

SUMMARY

Base Formulation

Parts by weight Water deionized 180 -INTRODUCTION Natrosol 250 HR 2 Thickener Ammonia, conc. 25 % Neutralising agent 2 **EXPERIMENTAL** Dispex AA 4030 **Dispersing additive** 2 Calgon N New, 10 % in water Wetting- / Dispersing 3 Parmetol MBX Can preservation 2 Foamaster MO 2134 Defoamer 2 Cosolvent 30 Propylene glycol : Butyl diglycol : Texanol = 1 : 1 : 1TiO₂ Pigment **Kronos 2190** 190 **TiO₂-Extender** varied X Filler **Omyacarb 5 GU** 220 Finntalc M 15 Filler 50 **Emulsion Binder** 320 Acronal S 790 (Styrene acrylic) Foamaster MO 2134 3 Defoamer Acticide MKB 3 10 Film preservation Rheovis PE 1330 Thickener 12 Water deionized 12 Total 1040 + X

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

Variation of the Pigment / TiO₂-Extender package All other formulation ingredients remain unchanged

Control, <u>without</u> TiO ₂ -Extender		with TiO ₂ -Extender									
		Full TiO ₂				- 10 % TiO ₂			- 20 % TiO ₂		
TiO ₂	190			190				17	71		152
Na/Al Silicate		20	40				20	40			
Silfit Z 91				20	40	60			60	98	98
Colido contont											
Solids content w/w [%]	61.0	61.8	62.5	61.8	62.5	63.1	61.1	61.8	62.5	63.8	63.2
PVC [%]	49.6	51.2	52.7	50.9	52.1	53.3	50.5	52.0	52.6	54.8	54.2
VM-1/0215/09.2019											6

TiO2-Extender

INTRODUCTION

EXPERIMENTAL

RESULTS

	Particle size		Oil Density absorption		Specific Surface	Color		
	d ₅₀	d ₉₇			BET			
	[µm]	[µm]	[g/100g]	[g/cm ³]	[m²/g]	L*	a*	b*
Precipitated Na/AI Silicate	5.0	18	140	2.1	95	98.9	- 0.1	0.6
Silfit Z 91	2.0	10	55	2.6	8	95.5	- 0.1	0.7
Other Fillers in Fo	ormulati	on (for	comparison c	only)				
Omyacarb 5 GU	5.5	26	16	2.7	2	96.0	- 0.2	0.7
Finntalc M 15	4.5	17	41	2.8	6	92.8	- 0.5	1.1
VM-1/0215/09.2019								7

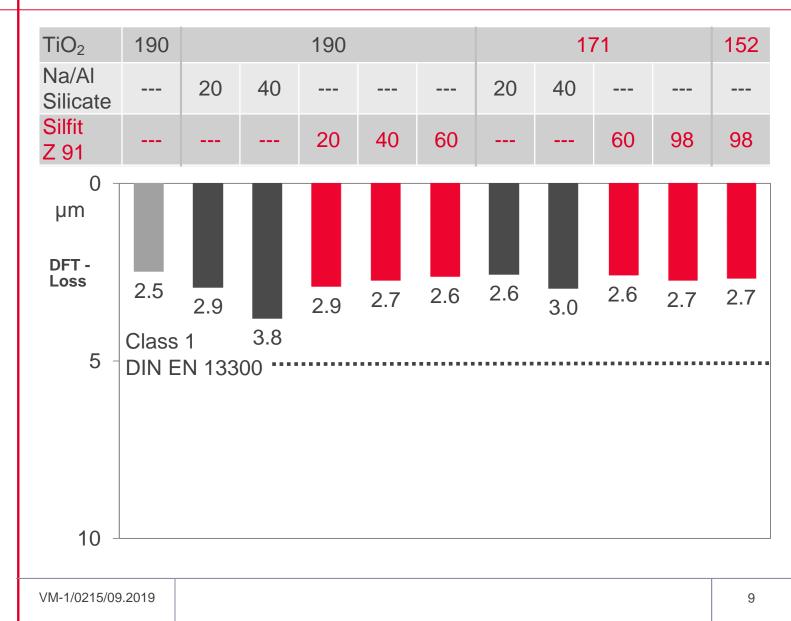
Results

INTRODUCTION

EXPERIMENTAL

RESULTS

Preparation and Storage						
Incorporation Pigment / Filler	good to moderate					
Foam formation	none					
Fineness of grind	25 µm					
Storage stability 23°C, 6 months	no phase separation, settling or sediment					
Properties without significant diffe	Properties without significant differences					
Viscosity 23°C	Shear rate at		40 - 60 [Pa 0.3 - 0.4 [Pa	-		
Liquid Water Permeability DIN EN 1062-1	Class W ₃ Low	0.020 - 0.02 [kg/(m ² *h ^{0,5})				
Water Vapor Transmission Rate DIN EN 1062-1	Class V _a Medium		20.0 - 23.5 [g/(m ² *d)]			
Gloss	dull matt, DIN EN 13000 85° < 5					
		Prepara	ation and Testing	g 🚺		
VM-1/0215/09.2019				8		


Wet-Scrub Resistance

INTRODUCTION

EXPERIMENTAL

RESULTS

Color

INTRODUCTION

EXPERIMENTAL

RESULTS

General:

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

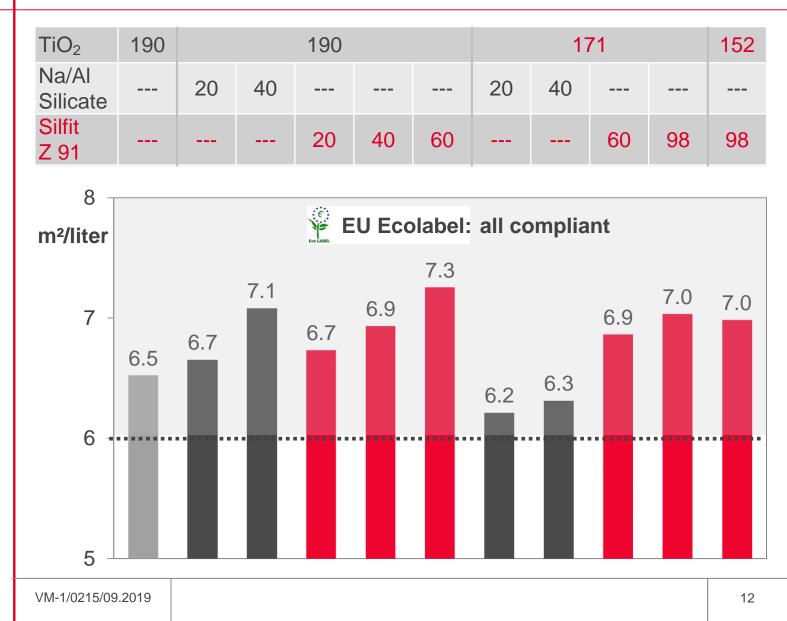
Identifies products that meet high standards

of environmental performance and quality.

Criterias relating to facade paints:

- Spreading rate
 - $\geq 6~m^2$ / liter at contrast ratio 98 %
- Content of white pigments (refractive index ≥ 1.8)
 ≤ 38 g / m² dried paint film at contrast ratio 98 %

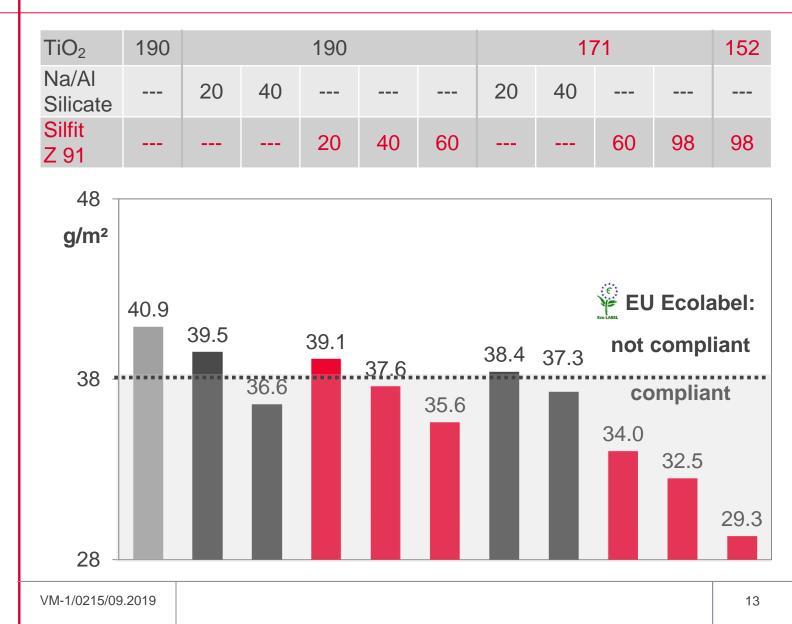
Spreading Rate


at Contrast Ratio 98 %

INTRODUCTION

EXPERIMENTAL

RESULTS


TiO₂-Content per m² at Contrast Ratio 98 %

INTRODUCTION

EXPERIMENTAL

RESULTS

RESULTS

SUMMARY

Cost / Performance

Germany 2019 / Contrast Ratio 98 %

TiO₂ 190 190 171 152 Na/Al INTRODUCTION 20 20 40 40 ____ ___ ___ ___ _ _ _ Silicate **EXPERIMENTAL** Silfit 40 60 20 60 98 98 Z 91 Raw material cost / liter Spreading rate / liter 11.1 8.6 7.8 7.0 6.2 5.1 3.2 Index = 1000.7 Change [%] -2.4 -3.2 -2.5 -2.0 -2.8 -4.9 -5.1 12.1 7.8 10.4 9.8 **Total** 7.6 5.7 Performance 1.6 3.0 Change [%] -0.8 -2.1

Summary

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

The use of the TiO_2 -Extenders leads to:

- Almost comparable processing properties, storage stability, color, gloss, liquid water permeability and breathability.
- Wet-scrub resistance reduced with Na/AI Silicate; with Silfit Z 91 largely maintaining the very good level.
- Optimized hiding power at additive dosage; with Silfit Z 91 moreover raw material cost savings.
- At 10 % reduced TiO₂ loading: Loss in hiding power cannot be compensated with Na/AI silicate;

with Silfit Z 91 markedly improved hiding power even better than control with full TiO_2 level + reduced formulation costs; synergy effect up to 20 % TiO_2 reduction with additional cost saving potential

Conclusion

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

Compared to precipitated Sodium Aluminum Silicate the

Silfit Z 91 gains the following combined benefits when used as a TiO_2 -Extender in facade paints

- Maintaining mechanical resistance and durability of the coating
- Markedly improvement of hiding power and spreading rates while reducing formulation costs
- TiO₂ reduction offering real white pigment savings without loosing performance
- Paint meeting EU Ecolabel requirements clearly below limits for white pigments

Starting Formulations

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

[1] highest brightness[2] best hiding power + high brightness[3] high cost savings + high hiding power		[1]	[2]	[3]	
Water deionized			180		
Natrosol 250 HR		2			
Ammonia, conc. 25 %			2		
Dispex AA 4030			2		
Calgon N New, 10 % in water			3		
Parmetol MBX			2		
Foamaster MO 2134			2		
Propylene glycol : Butyl diglycol : Texanol = 1 : 1 : 1	30				
Kronos 2190	190	190	171 to 152		
Silfit Z 91	20 to 40	40 to 60	60 to 98		
Omyacarb 5 GU		220			
Finntalc M 15		50			
Acronal S 790		320			
Foamaster MO 2134		3			
Acticide MKB 3	10				
Rheovis PE 1330	12				
Water deionized		12			
Solids content w/w	[%]	61.8	63.1	63.2	
PVC	[%]	50.9	53.3	54.2	

VM-1/0215/09.2019

We supply material for good ideas!

HOFFMANN MINERAL GmbH Muenchener Straße 75 DE-86633 Neuburg (Donau) Phone: +49 8431 53-0 Internet: www.hoffmann-mineral.de E-mail: info@hoffmann-mineral.com

Our applications engineering advice and the information contained in this memorandum are based on experience and are made to the best of our knowledge and belief, they must be regarded however as non-binding advice without guarantee. Working and employment conditions over which we have no control exclude any damage claim arising from the use of our data and recommendations. Furthermore we cannot assume any responsibility for patent infringements, which might result from the use of our information.

VM-1/0215/09.2019

Preparation

4			
INTRODUCTION EXPERIMENTAL	Mixing and dispersing	Mixing with dissolver, in sequence of mentioning the formulation Maximum peripheral speed of toothed disc (cow blade) 15 m/s for 20 min Water cooling with T max. = 50°C	•
RESULTS SUMMARY	Let Down	With Binder and further additives	
	Maturation	Over night	
	Application	Undiluted with doctor blade on automated film applicator or as indicated	
	Substrate	As indicated, depending on testing	
	Conditioning	Drying conditions before / during tests: 23 °C / 50 % relative humidity (RH) Drying time before testing: 28 days or as indicat	ted
	VM-1/0215/09.2019		19

INTRODUCTION

EXPERIMENTAL

RESULTS

Testing		
Paint Preparation		
Filler incorporation Foam formation	Subjective assessment during preparation	
Wet Paint		
Fineness of grind	Grindometer 0 – 50 µm	
Viscosity	1d after preparation, Rheometer 23°C, Searle sys	tem
Storage stability	Undiluted in 1I-metal can, 6 months 23°C	
Application with doc Dry film thickness (tor blade gap 300 μm on Leneta film DFT) ~ 70 μm	
Wet-scrub resistance	200 Cycles on automated wet-scrub resistance te according to ISO 11998. Classification along with DIN EN 13300	ster
VM-1/0215/09.2019		20

Testing

INTRODUCTION

EXPERIMENTAL

RESULTS

Application 400 equal to 2 coat) ml in total s with 5 m²/l each, DFT ~ 180 μm
Liquid Water Permeability W	Priming + 2 coats brush-applied on sand lime bricks Testing according to DIN EN 1062-3 Classification along with DIN EN 1062-1
Water-Vapor Transmission Rate V	2 coats brush-applied on filter paper grade 1575 Testing according DIN EN ISO 7783, wet-cup method; classification along with DIN EN 1062-1
Application: ga	p 100 - 400 µm gradually with doctor blade on Cardboard
Color / Gloss	L*, a*, b* over white, 85°-Gloss (Sheen) at full hiding film with DFT 120 µm
Hiding Power	Contrast ratio over black/white depending on dry film thickness. Calculation of minimum dry film thickness to comply with DIN EN 13300 classifications and resulting spreading rates, contrast ratio at given spreading rate respectively
	back
VM-1/0215/09.2019	21