

Electrophoretic deposition -Neuburg Siliceous Earth in black cathodic deposition paints

Author: Susanne Reiter

Contents

- Introduction
- Experimental
- Results pigment paste
 - > Viscosity
 - Storage stability at 23°C and 38°C
- Results E-Coat
 - ➢ Gloss 60°
 - Film roughness
 - Flexibility (cupping test, impact test)
 - Corrosion resistance / salt spray test
- Summary

EXPERIMENTAL

RESULTS

SUMMARY

APPENDIX

Sillitin Z 86 and Sillitin P 87 have been successfully used for many years in the field of electrodeposition coatings by a number of major corporation.

Traditionally, these products achieve an excellent property profile. They are characterized by very good storage stability of the pigment paste as well as bath stability. In addition to advantageous edge covering, the Neuburg Silicous Earth grades achieve good coating flexibility (impact and cupping test), even in "low density" formulations with low titanium dioxide content.

EXPERIMENTAL

RESULTS

SUMMARY

APPENDIX

The new product line of Calcined Neuburg Siliceous Earth is suitable for electrodeposition applications due to lowest possible sieve residues, excellent dispersion properties, highest brightness and color neutrality, and very good results in other applications such as powder coatings.

Furthermore, the question of additional performance is raised by the with a functional group surface-treated products Aktisil and Aktifit which, depending on the functionality selected, can achieve hydrophobicity, rheology control and covalent bonding.

Objective

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

APPENDIX

In this study, the traditional and new types of (Calcined) Neuburg Siliceous Earth in the current binder generation are tested in comparison with competitors on the market.

In cooperation with the company Allnex (Graz, Austria), a standard binder system for automotive add-on and spare parts was selected, in which the fillers were tested for their effects in

- a black pigment paste
- and the complete e-coat

Overview of the selected fillers

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

APPENDIX

<u>Clays:</u> Clay 1 Clay 2 (slightly finer than clay 1) Calcined Clay

Neuburg Siliceous Earth (NSE):

Sillitin Z 86, standard product Sillitin P 87, finer, standard recommendation after Z 86 Aktisil PF 777, Sillitin Z 86 alkyl functionalized, hydrophobic

Calcined Neuburg Siliceous Earth (CNSE):

Silfit Z 91, based on the standard product Sillitin Z 86 Aktifit PF 111, Silfit Z 91 alkyl functionalized, hydrophobic Aktifit PF 115, Silfit Z 91 amino functionalized, hydrophobic Aktifit VM, Silfit Z 91 vinyl functionalized, hydrophobic

Characteristics in appendix

Pigment Paste Base Formulation

Percent

INTRODUCTION	
EXPERIMENTAL	
RESULTS	Dei
SUMMARY	Ace
APPENDIX	
	Res
	Sur
	Cinc

	Pigment paste	
Deionized water	38.075	
Acetic acid 30%	2.00	
Resydrol EM 6642/55 BG	18.175	
Surfynol 104/50 BG	1.75	
Special black 4	3.65	
Filler	36.35	
Total	100.0	
VM-1/0520/03.2025		

EXPERIMENTAL

RESULTS

SUMMARY

APPENDIX

Preparation Pigment paste:

Dissolver with adapted bead mill, teflon disc and glass beads, 10 minutes at 7.9 m/s.

Preparation E-Coat:

Mix pigment paste, water and binder dispersion with blade agitator and fill into the deposition vessel, stir for about 2 hours, then deposit.

Deposition:

Voltage series with 260, 280 and 300 V and note down the corresponding charge, determine the analog film thickness and individual setting of the charge (50-54 Coulomb) for each individual recipe so that the film thickness is \pm 30 µm

Typical bath values:

pH value according to DIN ISO 976: 5.3 – 5.6 Specific conductivity DIN 53779: 1100 – 1350 µS/cm

Curing conditions:

Oven temperature 180 °C, dwelling time 25 minutes

Substrate

Gardobond 26S/6800/OC (Steel, zinc phosphated)

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

APPENDIX

Optical and mechanical testings as well as L-effect (gloss and roughness on horizontal and vertical surface areas)

Arrangement of the L-panels in the bath; the substrate is the cathode

area 1 (vertical, facing the anode)	A
	n
	0
	d
	е
area 2 (horizontal, top)	

Deposition at 300 V, 120 s, stirrer on

VM-1/0520/03.2025

Viscosity

Storage Stability at Room Temperature 23 °C

Storage Stability at Room Temperature 23 °C

after 6 months

INTRODUCTION

EXPERIMENTAL

RESULTS

Pigment paste

SUMMARY

APPENDIX

VM-1/0520/03.2025

Storage Stability at Increased Temperature 38 °C

INTRODUCTION

RESULTS

• Pigment paste

SUMMARY

Preservation of flowability	after 7d	after 28d	after 56d	after 168d
Clay 1	+	+	-	-
Clay 2	+	+	-	-
Calcined Clay	+	0	-	-
Sillitin Z 86	+	+	+	-
Sillitin P 87	+	+	+	-
Aktisil PF 777	+	+	+	+
Silfit Z 91	+	0	-	-
Aktifit PF 111	+	+	+	+
Aktifit PF 115	+	+	+	+
Aktifit VM	+	+	+	0

Gloss 60°

EXPERIMENTAL

RESULTS

• E-coat

SUMMARY

APPENDIX

VM-1/0520/03.2025

Gloss 60° L-panel Area 2

INTRODUCTION

EXPERIMENTAL

RESULTS

• E-coat

SUMMARY

Roughness

EXPERIMENTAL

INTRODUCTION

RESULTS

• E-coat

SUMMARY

Roughness L-panel - area 2

INTRODUCTION

EXPERIMENTAL

RESULTS

• E-coat

SUMMARY

Cupping Test

INTRODUCTION

EXPERIMENTAL

Impact Test

INTRODUCTION

Salt Spray Test 1000 h

Neutral Salt Spray Test after DIN EN ISO 9227

INTRODUCTION

EXPERIMENTAL

RESULTS

• E-coat

SUMMARY

APPENDIX

Before the salt spray test, the panels were treated with a longitudinal scribe according to Sikkens (1mm), so that the zinc phosphate layer was damaged in a defined manner and the scribe penetrates safely to the steel.

\rightarrow No significant differentiation of the fillers

VM-1/0520/03.2025

Salt Spray Test 1000 h

Microscopic view: example of pitting corrosion with calcined Clay

INTRODUCTION

EXPERIMENTAL

RESULTS

• E-coat

SUMMARY

APPENDIX

VM-1/0520/03.2025

Salt Spray Test 1000 h

Area of the holes in the scribe, average value of two panels 3,0 INTRODUCTION **EXPERIMENTAL** 2,5 **RESULTS** 2,0 • E-coat $[mm^2]$ 1,5 SUMMARY **APPENDIX** 1,0 0,5 0,0 Clay 2 Clay 1 Calc. Clay Sillitin Z 86 Sillitin P 87 91 Aktifit PF 115 Aktifit VM Aktisil PF 777 Aktifit PF 111 Silfit Z VM-1/0520/03.2025 24

—

Sillitin Z 86 and Aktisil PF 777 vs. Clay 1

Silfit Z 91 and Aktifit Types vs. Calcined Clay

Summary

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

APPENDIX

 Compared to the <u>Clays</u>, <u>Sillitin Z 86</u> and <u>Sillitin P 87</u> have a comparably good storage stability at room temperature, but an improved shelf life at raised temperatures.

Aktisil PF 777 becomes more viscous by storage at 38°C, but is stable over a considerably longer period of time (at least 6 months) and does not gel. It is also recommended for a visual uniform appearance on the different geometric parts (L-effect).

 Compared with the <u>calcined Clay</u>, Silfit Z 91, Aktifit PF 111, Aktifit PF 115 und Aktifit VM offer improved storage stability even at room temperature. All Aktifit types achieve this even at raised temperatures.

In addition, the Aktifit PF 115 achieves better mechanical values (cupping and Impact Test).

All Calcined Neuburg Siliceous Earth products show a significant improvement in corrosion protection.

We supply material for good ideas!

HOFFMANN MINERAL GmbH Muenchener Straße 75 DE-86633 Neuburg (Donau) Phone: +49 8431 53-0 Internet: www.hoffmann-mineral.de E-mail: info@hoffmann-mineral.com

Our applications engineering advice and the information contained in this memorandum are based on experience and are made to the best of our knowledge and belief, they must be regarded however as non-binding advice without guarantee. Working and employment conditions over which we have no control exclude any damage claim arising from the use of our data and recommendations. Furthermore we cannot assume any responsibility for patent infringements, which might result from the use of our information.

VM-1/0520/03.2025

Filler Characteristics

INTRODUCTION	

EXPERIMENTAL

RESULTS

SUMMARY

	Clay 1
Particle size d ₅₀ [µm]	3.3
Particle size d ₉₇ [µm]	14.7
Residue > 40µm [mg/kg]	23
Electrical conductivity [µS/cm]	177
Oil absorption [g/100g]	53
Spec. surface area BET [m²/g]	17
Surface treatment	-

Filler Characteristics

IN	I ROI	JUCI	ION

EXPERIMENTAL

RESULTS

SUMMARY

	Clay 2
Particle size d ₅₀ [µm]	2
Particle size d ₉₇ [µm]	10
Residue > 40µm [mg/kg]	94
Electrical conductivity [µS/cm]	166
Oil absorption [g/100g]	50
Spec. surface area BET [m²/g]	18
Surface treatment	-

Filler Characteristics

INTRODUCTION		Calcined Clay
EXPERIMENTAL	Particle size d ₅₀ [µm]	2
RESULTS	Particle size d ₉₇ [µm]	11
SUMMARY	Residue > 40µm [mg/kg]	35
APPENDIX	Electrical conductivity [µS/cm]	12
	Oil absorption [g/100g]	106
	Spec. surface area BET [m²/g]	15
	Surface treatment	_

INTRODUCTIO	Ν
-------------	---

EXPERIMENTAL

RESULTS

SUMMARY

Neuburg Siliceous Earth	Sillitin Z 86
Particle size d ₅₀ [µm]	1.9
Particle size d ₉₇ [µm]	9
Residue > 40µm [mg/kg]	20
Electrical conductivity [µS/cm]	80
Oil absorption [g/100g]	55
Spec. surface area BET [m²/g]	12
Surface treatment	-

INTRODUCTIO	Ν
-------------	---

EXPERIMENTAL

RESULTS

SUMMARY

Neuburg Siliceous Earth	Sillitin P 87
Particle size d ₅₀ [µm]	1.5
Particle size d ₉₇ [µm]	6.0
Residue > 40µm [mg/kg]	20
Electrical conductivity [µS/cm]	80
Oil absorption [g/100g]	55
Spec. surface area BET [m²/g]	13
Surface treatment	-

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

Neuburg Siliceous Earth	Aktisil PF 777
Particle size d ₅₀ [µm]	2.2
Particle size d ₉₇ [µm]	10
Residue > 40µm [mg/kg]	20
Electrical conductivity [µS/cm]	n. a. (hydrophobic)
Oil absorption [g/100g]	35
Spec. surface area BET [m²/g]	9
Surface treatment	alkyl functionalized

EXPERIMENTAL

RESULTS

SUMMARY

Calcined Neuburg Siliceous Earth	Silfit Z 91
Particle size d ₅₀ [µm]	2
Particle size d ₉₇ [µm]	10
Residue > 40µm [mg/kg]	10
Electrical conductivity [µS/cm]	20
Oil absorption [g/100g]	65
Spec. surface area BET [m²/g]	10
Surface treatment	-

EXPERIMENTAL

RESULTS

SUMMARY

Calcined Neuburg Siliceous Earth	Aktifit PF 111
Particle size d ₅₀ [µm]	2
Particle size d ₉₇ [µm]	10
Residue > 40µm [mg/kg]	10
Electrical conductivity [µS/cm]	n. a. (hydrophobic)
Oil absorption [g/100g]	60
Spec. surface area BET [m²/g]	9
Surface treatment	alkyl functionalized

EXPERIMENTAL

RESULTS

SUMMARY

Calcined Neuburg	Aktifit PF 115
Particle size d ₅₀ [µm]	Z
Particle size d ₉₇ [µm]	10
Residue > 40µm [mg/kg]	10
Electrical conductivity [µS/cm]	n. a. (hydrophobic)
Oil absorption [g/100g]	60
Spec. surface area BET [m²/g]	9
Surface treatment	special amino functionalized

EXPERIMENTAL

RESULTS

SUMMARY

Calcined Neuburg Siliceous Earth	Aktifit VM
Particle size d ₅₀ [µm]	2
Particle size d ₉₇ [µm]	10
Residue > 40µm [mg/kg]	10
Electrical conductivity [µS/cm]	n. a. (hydrophobic)
Oil absorption [g/100g]	65
Spec. surface area BET [m²/g]	9
Surface treatment	vinyl functionalized