

Neuburg Siliceous Earth in water-based corrosion protection acrylate single-layer white

Author: Barbara Mayer

Contents

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

- Introduction
- Experimental
- Results
 - Viscosity
 - Appearance (Color & Gloss)
 - > Corrosion Resistance
 - Humidity Test
 - Salt Spray Test
- Summary

Status Quo

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

Corrosion protection is a major area of the coating industry and has always been dominated by solvent-based formulations. Despite their high solvent content and the associated occupational health and safety requirements, coatings are considered the first choice for high resistance requirements.

Due to international environmental regulations that focus on limiting VOCs and increasing consumer demand for environmentally friendly solutions, water-based systems are considered the future for this coating sector as well.

Specially developed raw materials are needed to formulate waterbased coating systems as efficiently as solvent-based systems. In most cases, these have a hydrophobic character, with the help of which the resulting film can form a barrier against moisture.

Objective

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

Another way to prevent corrosion is to prevent the diffusion of water, ions and oxygen to the metal surface. This can be realized with the help of a suitable filler.

In this study, the advantages of the functional filler Neuburg Siliceous Earth in a aqueous acrylate formulation in a single-layer design are shown.

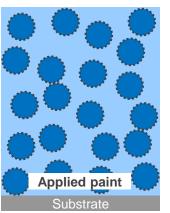
The following products will be presented:

and

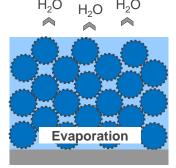
Sillitin Z 89, a light-colored, traditional type,

Aktifit Q, a hydrophobic, calcined variant of Neuburg Siliceous Earth, produced by modifying the surface with a methacrylic functional group.

Corrosion Protection Requirements


INTRODUCTION

EXPERIMENTAL

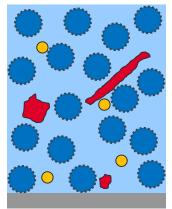

RESULTS

SUMMARY

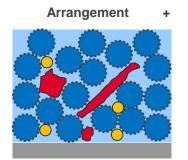
Film formation process water-based paint

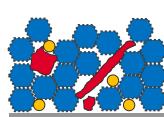
1. Clearcoat without pigments/fillers

Deformation polymer particles


Water phase

Polymer particle


Coherent barrier


T [°C] ≥ MFFT

2. Pigmented coating with filler

Deformation disturbed

O Pigment Filler

Base Formulation

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

Pigment Preparation	1	Water demineralized			5.90
	2	Edaplan 490		Dispersing additive	1.20
	3	AMP 90		Neutralizing agent	0.02
	4	Byk 024		Defoamer	0.10
	5	Byk 349		Wetting agent	0.18
	6	Kronos 2190		Pigment white	17.70
	7	Filler			7.50
	8	Water demineralized			2.90
	9	Alberdingk AC 2403		Acrylic dispersion	57.90
Let Down	10	Byk 024		Defoamer	0.15
	11	premix	Asconium 142DA	Org. corrosion inhibitor	1.90
	12		AMP 90	Neutralizing agent	0.15
	13	D	Water demineralized		1.90
	14	Opt	tifilm Enhancer 300	Co-Solvent	1.50
	15	Ascotran H10		Flash rust inhibitor	0.50
	16	Tafigel PUR 60 solution (10 % PUR 60; 20 % DPM; 70 % Water)		Thickener	0.50
Total			100.00 %		
Solids content w/w			56 %		
Pigment volume concentration (PVC)			21 %		

Filler Characteristics

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

	Calcium carbonate	Sillitin Z 89	Aktifit Q
Color L*	96	94	94
Color a*	-0.1	0.1	-0.1
Color b*	-0.1	4.0	1.0
Particle size d ₅₀ [µm]	1.1	1.9	2.0
Particle size d ₉₇ [µm]	3.5	9	10
Oil absorption [g/100g]	39	55	65
Specific surface area BET [m²/g]	10	11	9
Surface treatment			methacrylic functionalized

Preparative Methods

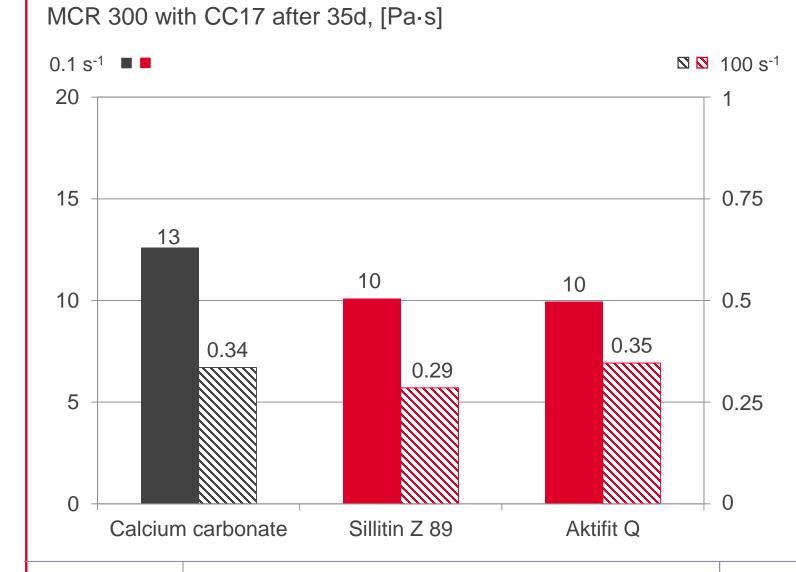
INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

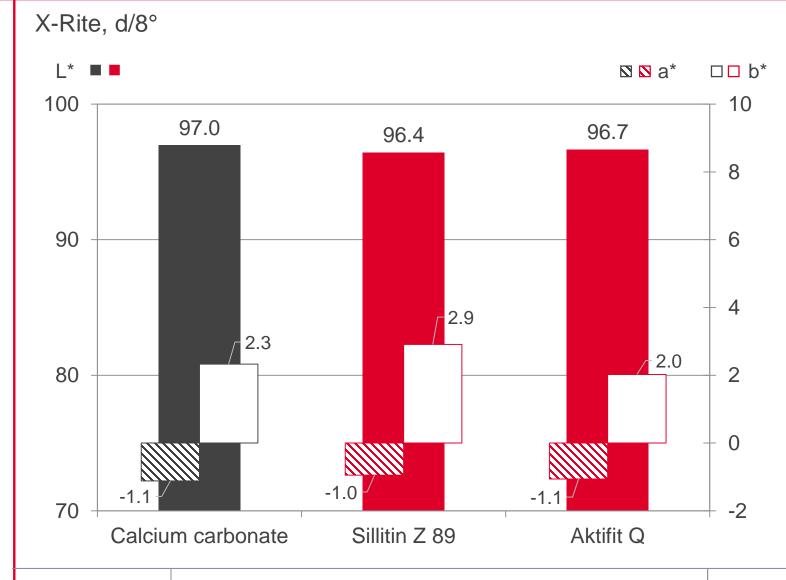
Mixing	 Pigment preparation: Dissolver with toothed disc 10 min at 10.0 m/s Let Down: Submission of binder Addition of remaining ingredients at 5.0 m/s After dosing thickener finally 5 min at 5.0 m/s
Application	After 35 d maturing time Substrate: cold rolled steel, Q-Panel Typ R 48 Spray application: 10 % diluted with water, nozzle size 3 mm Dry film thickness: \sim 70 μ m, single-layer
Conditioning	Drying conditions 23 °C / 50 % relative humidity • Appearance, adhesion: 7 d • Corrosion Tests: 28 d


Viscosity

INTRODUCTION

EXPERIMENTAL

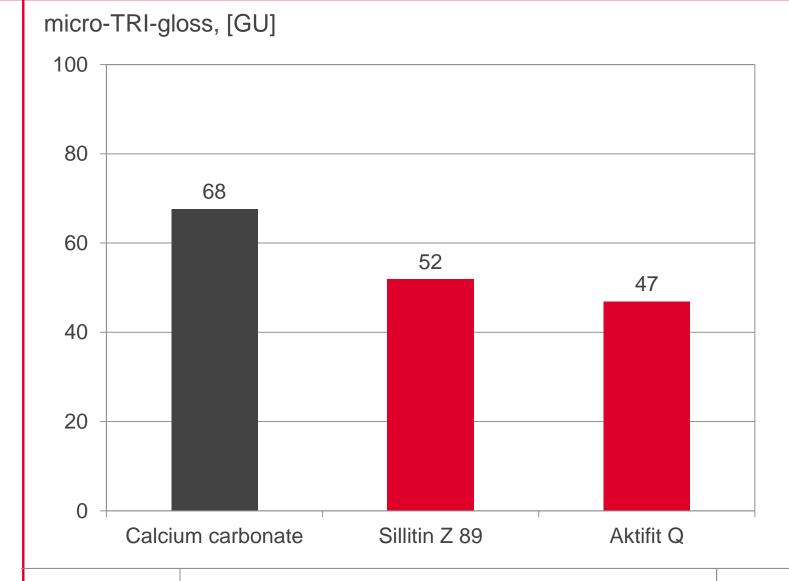
RESULTS


Color

INTRODUCTION

EXPERIMENTAL

RESULTS


Gloss 60°

INTRODUCTION

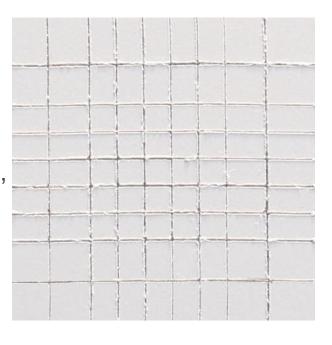
EXPERIMENTAL

RESULTS

Adhesion

112

Cross-cut test 2 mm with tape


INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

All formulations
show excellent
adhesion to the substrate,
cross-cut rating:
GT 0

Corrosion Protection

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

Evaluation criteria

Humidity test 1000 h, DIN EN ISO 6270-2 CH

Panel without scribe

- Adhesion
- Blistering
- Under-film corrosion (stripped)

Salt spray test 1000 h, DIN EN ISO 9227 NSS

Panel	without
scribe	

- Adhesion
- Blistering
- Under-film corrosion (stripped)

Panel with scribe
Sikkens 1 mm
10 cm long

- Blistering
- Delamination
- Rust Creep

Humidity Test 1000 h Adhesion

114


Cross-cut test 2 mm with tape, after 24 h at 23 °C / 50 % RH

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

Humidity Test 1000 h Blistering

DIN EN ISO 4628-2

INTRODUCTION

EXPERIMENTAL

RESULTS

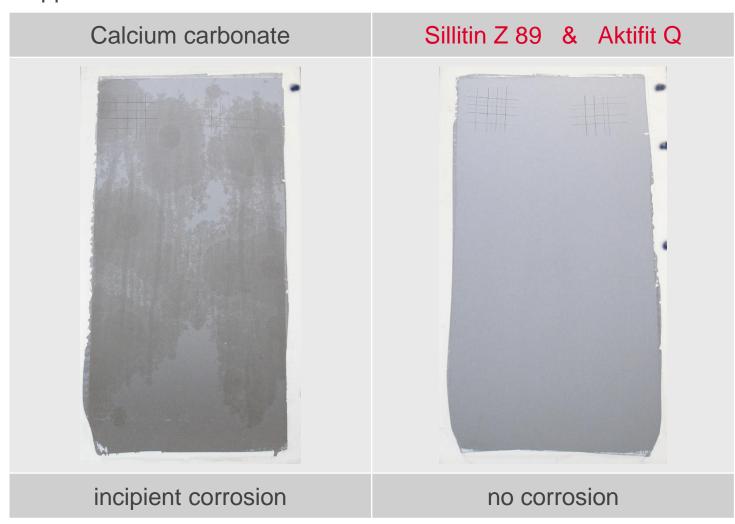
SUMMARY

All formulations

blister-free

$$\rightarrow 0 - 0(S0)$$

Humidity Test 1000 h Under-film Corrosion


stripped

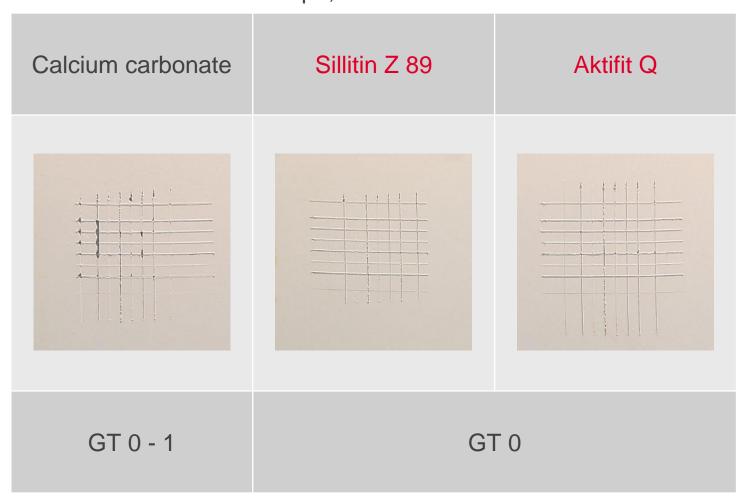
INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

Salt Spray Test 1000 h Adhesion


Cross-cut test 2 mm with tape, after 1 h at 23 °C / 50 % RH

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

Salt Spray Test 1000 h Blistering & Under-film Corrosion

DIN EN ISO 4628-2

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

All formulations no blistering or under-film corrosion.

Salt Spray Test 1000 h Blistering at Scribe

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

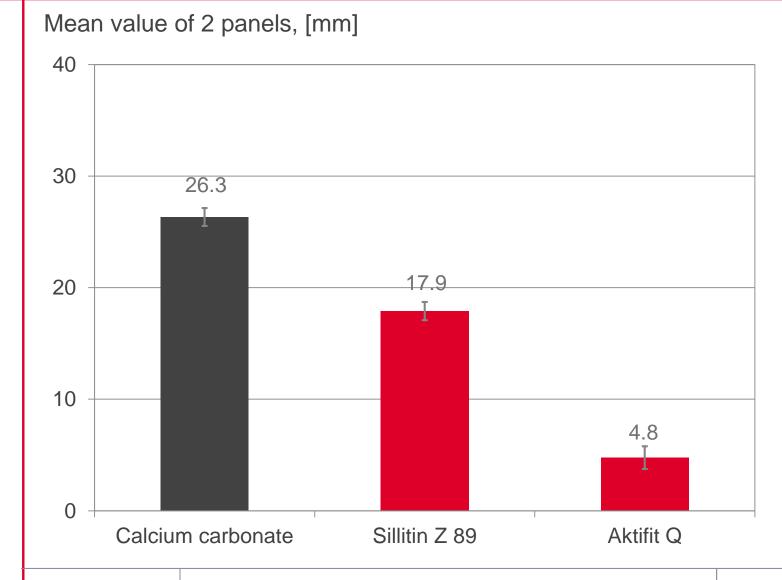
Salt Spray Test 1000 h Delamination & Rust Creep

INTRODUCTION

EXPERIMENTAL

RESULTS

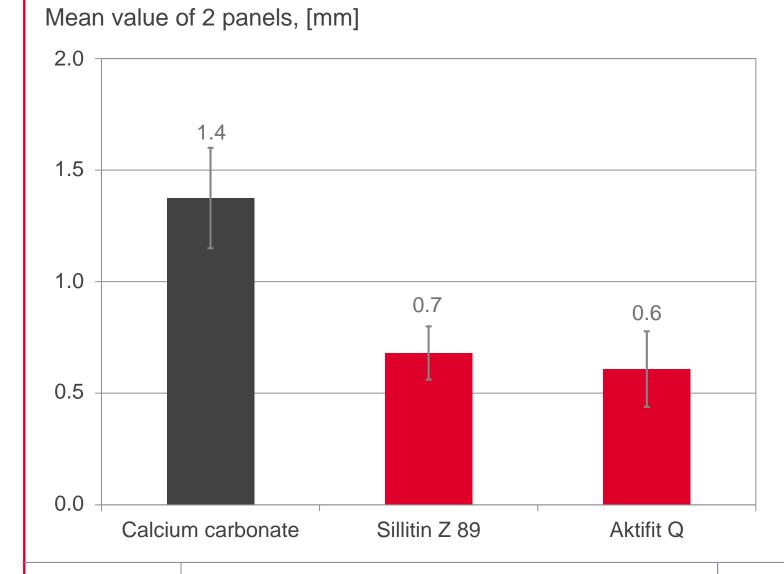
SUMMARY


Salt Spray Test 1000 h Delamination

INTRODUCTION

EXPERIMENTAL

RESULTS


Salt Spray Test 1000 h Rust Creep

INTRODUCTION

EXPERIMENTAL

RESULTS

Summary

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

In the aqueous acrylate corrosion protection lacquer presented here, used in single layer system (DTM),

Neuburg Siliceous Earth provides the following advantages over fine calcium carbonate:

Sillitin Z 89 & Aktifit Q

- Improvement of the adhesion after Humidity test and Salt spray test
- No under-film corrosion in the Humidity test

Sillitin Z 89

- Reduced blistering at scribe in the Salt spray test
- Less delamination and rust creep at scribe

Aktifit Q

- No blistering at scribe in the Salt spray test,
- Minimal delamination and rust creep at scribe

We supply material for good ideas!

HOFFMANN MINERAL GmbH Muenchener Straße 75 DE-86633 Neuburg (Donau) Phone: +49 8431 53-0

Internet: www.hoffmann-mineral.de E-mail: info@hoffmann-mineral.com

Our applications engineering advice and the information contained in this memorandum are based on experience and are made to the best of our knowledge and belief, they must be regarded however as non-binding advice without guarantee. Working and employment conditions over which we have no control exclude any damage claim arising from the use of our data and recommendations. Furthermore we cannot assume any responsibility for patent infringements, which might result from the use of our information.

Preparation Method (1) Pigment Preparation

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

APPENDIX

Pos.		Description	
1	Water demineralized		5.90
2	Edaplan 490	Dispersing additive	1.20
3	AMP 90	Neutralizing agent	0.02
4	Byk 024	Defoamer	0.10
5	Byk 349	Wetting agent	0.18
6	Kronos 2190	Pigment white	17.70
7	Filler		7.50
8	Water demineralized		2.90
	Total		35.50%

Add pos. 1 - 5 and pos. 6 - 7 while stirring with toothed disc, disperse 10 min at 10.0 m/s, complete with pos. 8

Preparation Method (2) Let Down

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

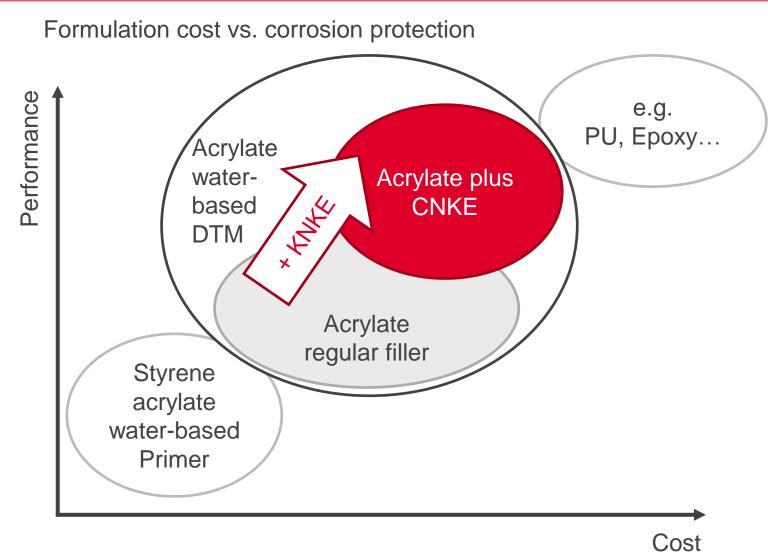
APPENDIX

Pos.			Description	
	Pigment preparation			35.50
9	Alberdingk AC 2403		Acrylic dispersion	57.90
10	Byk 024		Defoamer	0.15
11	. <u>×</u>	Asconium 142DA	Org. corrosion inhibitor	1.90
12	premix	AMP 90	Neutralizing agent	0.15
13	pr	Water demineralized		1.90
14	Opt	tifilm Enhancer 300	Co-Solvent	1.50
15	Ascotran H10		Flash rust inhibitor	0.50
16	Tafigel PUR 60 solution (10% PUR 60; 20% DPM; 70% Water)		Thickener	0.50
	Total			100.00 %

Add pos. 9 to 16 one after the other at 5.0 m/s.

Prepare premix in advance, pos. 11 & 12 and add pos. 13, solution must be clear, if not discard, add clear premix to the formulation, prepare pos. 16 in advance by mixing, add to formulation, finally mix 5 min

Value for Money


INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

APPENDIX

Cost