

Neuburg Siliceous Earth in water-based corrosion protection acrylate primer red

Author: Bodo Essen

Contents

INTRODUCTION

EXPERIMENTAL

RESULTS

- Introduction
- Experimental
- Results
 - Viscosity
 - Appearance Dry Film
 - Corrosion Resistance
 - Humidity Test
 - Salt Spray Test
- Summary

Status Quo

EXPERIMENTAL

RESULTS

SUMMARY

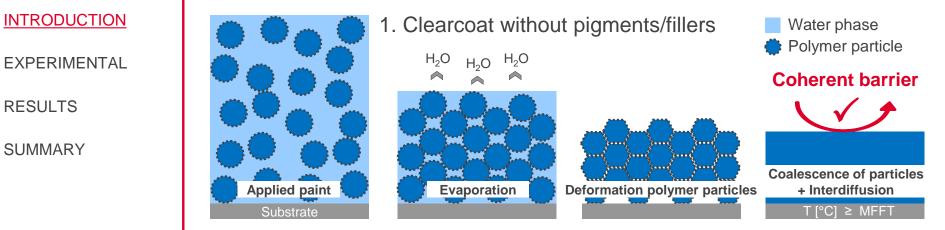
Solvent-based coatings have always been first choice in corrosion protection of metals by organic coatings.

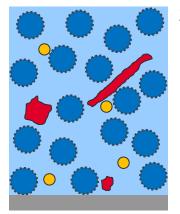
On the other hand, legislative pressure for VOC reduction and increasing consumer demand require development of solvent-reduced and environmentally friendly formulations.

Water-based coating systems are therefore becoming increasingly important, but at the same time they are intended to fulfill the high performance level associated with classical systems:

- Technical producibility / storage stability / processing properties
- Good adhesion, particularly for primer application
- Excellent corrosion protection

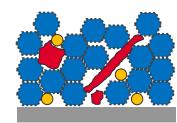
In addition, the deviating film forming process compared to solvent-based coatings places high claims on the use of modern fillers.




RESULTS

SUMMARY

Film formation process water-based paint



2. Pigmented coating with filler

Objective

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

Use of Neuburg Siliceous Earth as a functional filler for optimizing the performance of water-based anti-corrosion coatings.

For this purpose the calcined and amino functionalized hydrophobic grade Aktifit PF 115 is used as a suitable variant.

A common filler combination consisting of natural calcium carbonate and talc serves for comparison

Base formulation:	Acrylic primer red, physically drying	
	PVC 31 %, Solids content 56 % (w/w)	
Binder:	ALBERDINGK® SC 48, MFFT 14°C	

Formulation Variants

INTRODUCTION

EXPERIMENTAL

RESULTS

				Control	NSE	
	1	Water demineralized		7.0	15.0)
L	2	Edaplan 490	dispersing additive	0.8		
Pigment preparation	3	Byk 024	defoamer	0.	1	
Jar	4		co-solvent	3.	0	
rep	5	Bayferrox 130 M	pigment, red	8.	9	
it p			Ground calcium carbonate	10.5		
len	6	Filler	Talc	3.0		
gn			Aktifit PF 115		13.5	
Ē	7	Heucophos ZPO	anti-corrosion pigment	7.	0	
	8	Heucorin RZ	org. corrosion inhibitor	1.	0	
	9	Alberdingk SC 48	acrylic dispersion	39.	7	
	10	Water demineralized		10.9	2.9)
	11	Optifilm Enhancer 300	co-solvent	1.	0	
۲V N	12	Byk 024	defoamer	0.	4	
Let Down	13	Byk 349	wetting agent	0.	1	
et [14	Ascotran H10	flash rust inhibitor	0.	5	
Ľ	15	Ammonia (25 %)	neutralizing agent	0.	8	
	16	Resydrol AX 237w/70BG	epoxy-alkyd resin	4.	0	
	17	Borchi OXY-Coat 1101	drier	0.	1	
	18	Tafigel PUR 41	rheology modifier	1.	2	
Тс	Total [%]			100.	0	
Solids content w/w [%]			5	6		
Pi	gme	nt volume concentration [%]		3	1	
VM-0/1219/12.2019			6			

Filler Characteristics

EXPERIMENTAL	_

INTRODUCTION

RESULTS

	Calcium carbonate	Talc	Aktifit PF 115
Particle size d ₅₀ [µm]	1.1	8.0	2.3
Particle size d ₉₇ [µm]	3.5	24.1	8.5
Oil absorption [g/100g]	39	47	60
	Ø 41 Fille	r package	
Surface treatment	-	-	amino functionalized, hydrophobic
VM-0/1219/12.2019			7

INTRODUCTION

EXPERIMENTAL

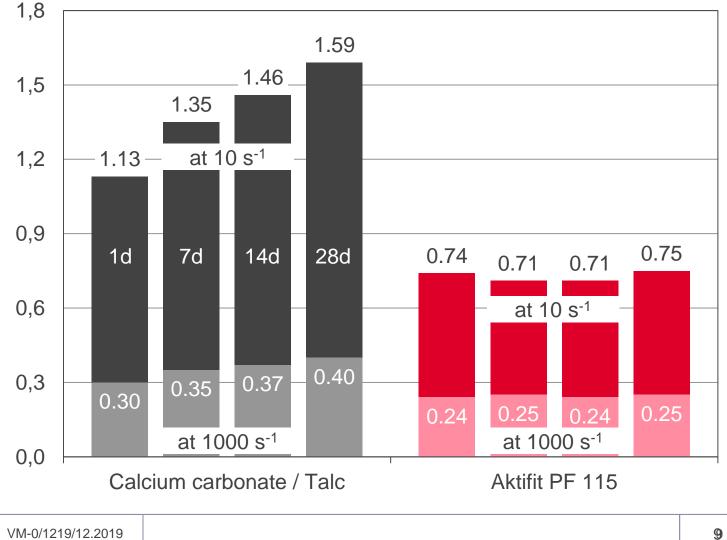
RESULTS

SUMMARY

Preparative Methods

Mixing	 <u>Pigment preparation:</u> Dissolver with toothed disc (Cowles Blade) 10 min at 10.0 m/s under ice water cooling <u>Let Down:</u> Submission of binder thinned with water Addition of remaining ingredients at 5.0 m/s After dosing thickener finally 5 min at 5.0 m/s avoiding air entry 		
Application	After 28 d maturing time Substrate: cold rolled steel, Q-Panel Type R 48 <u>Dual-Layer:</u> undiluted with doctor blade 12 mm/s Automated film applicator / 4 h intermediate drying Total dry film thickness (DFT): ~ 150 μm <u>Single-Layer:</u> dilution to spray viscosity 3 mm compressed air nozzle at 2 bar, DFT ~ 80 μm		
Conditioning	Drying conditions 23°C / 50% RH Gloss: 7 d Adhesion / Corrosion Tests: 28 d		
VM-0/1219/12.2019			

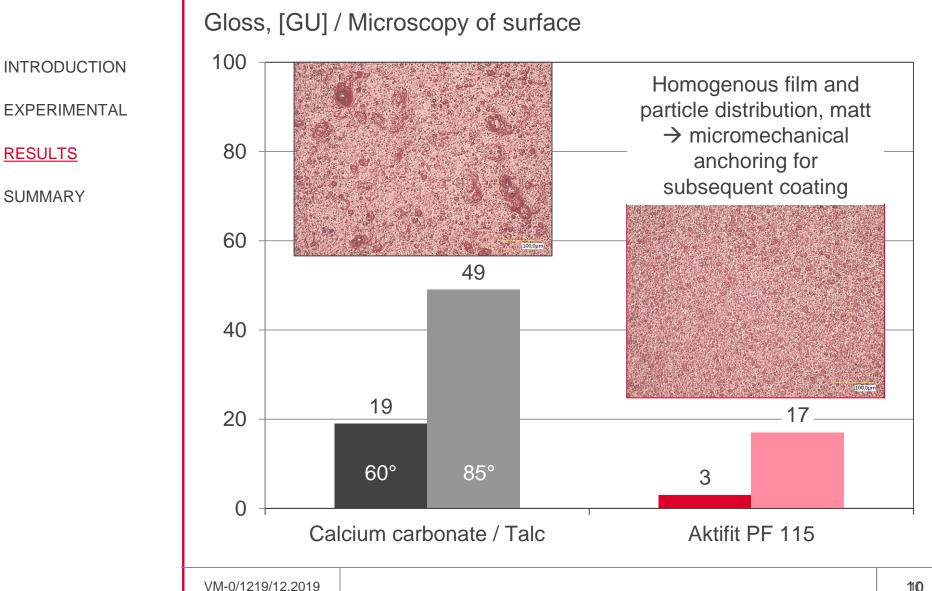
Viscosity



Stability up to 28 days [Pa-s] MCR 300 / CC17 / 23°C

INTRODUCTION

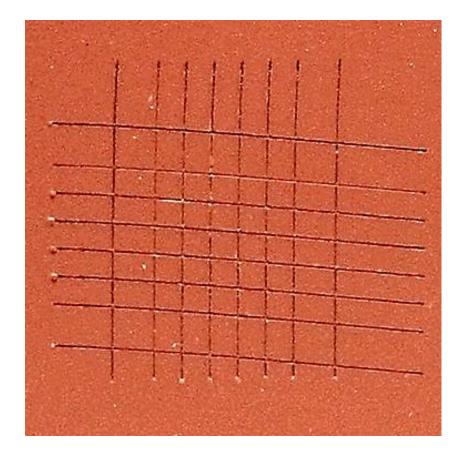
EXPERIMENTAL


RESULTS

Appearance Dry Film

Adhesion

Cross-cut test 2 mm, tape tear-off


INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

Both variants Rating: 0

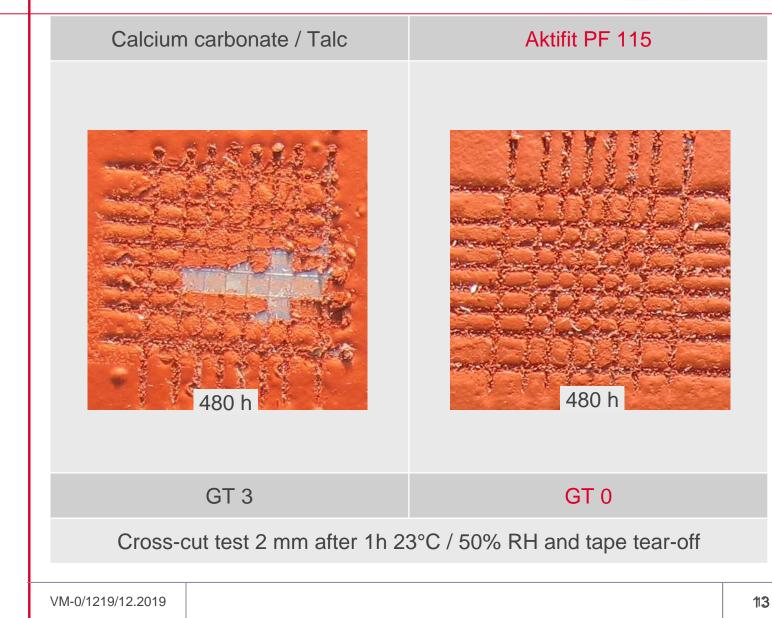
Corrosion Protection

Evaluation criteria on non-scribed surface and at scribe

INT	ROD	UCT	ION

EXPERIMENTAL

RESULTS


Humidity test	DIN EN ISO 6270-2 CH	HV [1] / K3 TSD 154
Non-scribed	AdhesionBlisteringCorrosion (stripped)	

Salt spray test	DIN EN ISO 9227 NSS	HV (41 K4 T5D 452 Km 2
Non-scribed	AdhesionBlisteringCorrosion (stripped)	
Scribed Sikkens 1 mm 6 cm long	BlisteringDelaminationCorrosion (stripped)	
VM-0/1219/12.2019		

Humidity Test Adhesion

INTRODUCTION

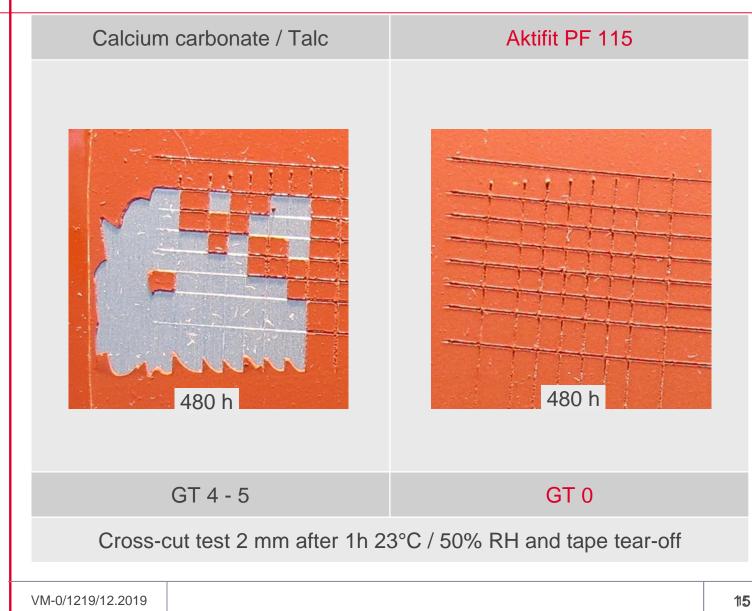
EXPERIMENTAL

RESULTS

Humidity Test Non-Scribed

INTRODUCTION

EXPERIMENTAL


RESULTS

Salt Spray Test Adhesion

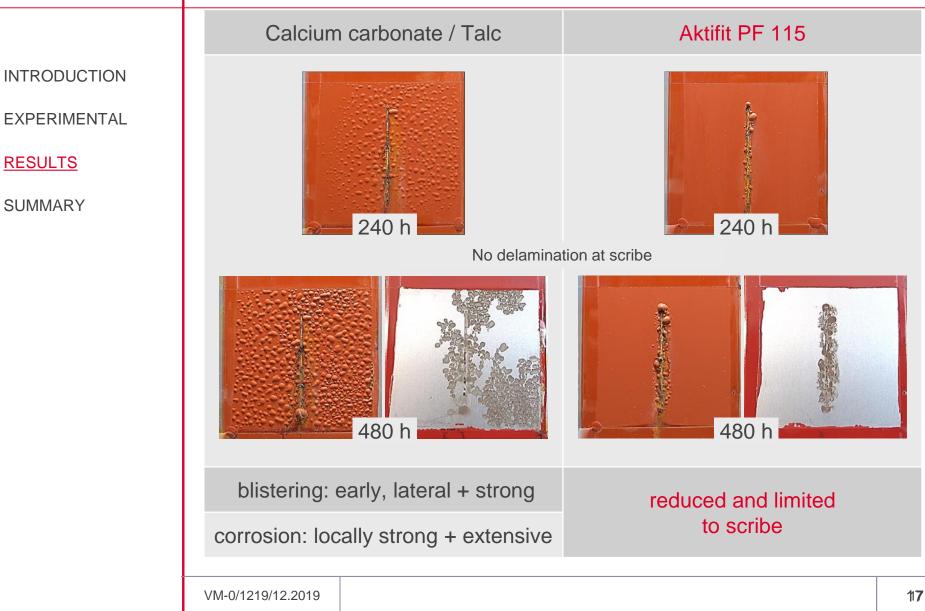
INTRODUCTION

<u>RESULTS</u>

Salt Spray Test Non-Scribed

INTRODUCTION

EXPERIMENTAL


RESULTS

Salt Spray Test Scribe

Salt Spray Test Single-Layer, 80 µm DFT

Summary

Suitable surface treated Neuburg Siliceous Earth improves the performance of the present anti-corrosion primer formulation.

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

Compared to the filler combination of ground calcium carbonate and talc, the calcined, hydrophobic grade Aktifit PF 115 is recommended by

- Lower viscosity and better stability during storage
- Higher wet-adhesion in humid and ionic environmental exposure
- Significant improvement in resistance to blistering and corrosion in non-scribed surface area
- Strongly inhibited corrosion progress after coating damage

Optimized barrier properties with Aktifit PF 115 provide

- VOC compliant corrosion protection with only a single filler
- Doubled protection period without loosing performance
- Layer thickness reduction: material / time / energy / cost savings
- Layer saving: Outstanding performance even for economical, much more critical single coat application

We supply material for good ideas!

HOFFMANN MINERAL GmbH Muenchener Straße 75 DE-86633 Neuburg (Donau) Phone: +49 8431 53-0 Internet: www.hoffmann-mineral.de E-mail: info@hoffmann-mineral.com

Our applications engineering advice and the information contained in this memorandum are based on experience and are made to the best of our knowledge and belief, they must be regarded however as non-binding advice without guarantee. Working and employment conditions over which we have no control exclude any damage claim arising from the use of our data and recommendations. Furthermore we cannot assume any responsibility for patent infringements, which might result from the use of our information.

VM-0/1219/12.2019