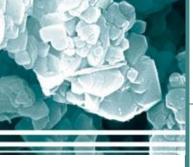

Water-based Wood Coatings

Aktisil WW & Gloxil WW

Speaker: Siegfried Heckl

Author: Bodo Essen, Hubert Oggermueller



Aktisil WW

Functional Filler for Matting Water-based Acrylic Clear Coats for Wood

EXPERIMENTAL

RESULTS

SUMMARY

Objective

Assessment of the performance of Aktisil WW versus commercially available and established silica matting agents in a water-based clear coat for wood coating.

Competitive products:

Fumed Silica (Acematt TS 100)

Precipitated Silica (Syloid ED 5)

Special attention should be paid to resulting effects on optical appearance as well as the coatings resistance to

- Water
- ethanol and
- ink

EXPERIMENTAL

RESULTS

SUMMARY

Base Formulation

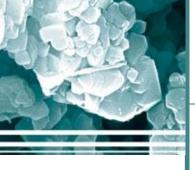
		pbw *
Alberdingk AC 2514	Binder, acrylic emulsion, self-crosslinking, MFFT 43 °C	79.4
Byk 024	Defoamer	0.8
Butyl diglycol	Cosolvent	6.0
Butyl glycol	Cosolvent	2.0
Water demineralized		7.5
Matting agent	Silica or Aktisil WW	varied X
Aquamat 272	Wax dispersion	3.3
Byk 346	Wetting agent	0.4
Total		99.4 + X

^{*} Parts by weight

EXPERIMENTAL

RESULTS

SUMMARY



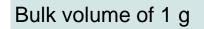
Formulation Variations

		Without	With matting agent						
					pb	W			
				emi-ma			Mat		
			(glo	ss 60°	~30)	(glo	ss 60° -	-15)	
Acematt TS 100			0.8			2.5			
Syloid ED 5				0.8			2.5		
Aktisil WW					6.25			11.5	
Total		99.4	100.2	100.2	105.7	101.9	101.9	110.9	
Solids content w/w	[%]	37.2	37.7	37.7	40.9	38.7	38.9	43.7	
PVC	[%]	0.0	1.2	1.3	8.7	3.5	3.9	15.0	

Subsequently individual thickening with DSX 1514 to In-can viscosity (150 s DIN 4 mm) and dilution to application viscosity (100 s DIN 4 mm)

Characteristics

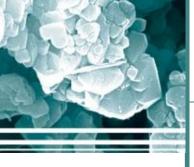
Matting Agent


INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY


		Fumed Silica	Precipitated Silica	Neuburg Siliceous Earth
		Acematt TS 100	Syloid ED 5	Aktisil WW
Density	[g/cm³]	2.2	2.0	2.1
Particle size d ₅₀	[µm]	4 *	9	4
Oil absorption	[g/100g]	360	320	22
Specific surface area, BET	[m²/g]	250	400	Unquantifyable, <= 8
Surface treatment		none	none	yes

^{*} average agglomerate particle size (TEM)

EXPERIMENTAL

RESULTS

SUMMARY

Results

Processing properties and storage stability

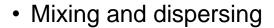
Abrasion resistance

Optical properties

Water, alcohol and ink resistance

Spreading rate and cost calculations

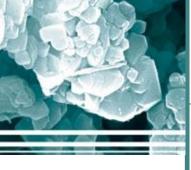
Processing Properties and Storage Stability



INTRODUCTION

EXPERIMENTAL

RESULTS


SUMMARY

Storage stability

Drying time

Mixing and Dispersing

INTRODUCTION

EXPERIMENTAL

RESULTS

 Processing properties and storage stability

SUMMARY

	Matting agent							
Criteria	Acematt TS 100	Syloid ED 5	Aktisil WW					
Dust formation	• •	· • •						
Incorporation	•••	••						
Dispersibility	· •							
Foam formation	· •	00						

EXPERIMENTAL

RESULTS

 Processing properties and storage stability

SUMMARY

Storage Stability 12 weeks at 23°C

In-can viscosity

	Matting agent							
Criteria	Acematt TS 100	Syloid ED 5	Aktisil WW					
Gelling								
Phase Separation	••	•••						
Settling		**	**					
Re-stir	No sediment							

- * Partly floating of wax dispersion
- ** Slight settling of matting agent without forming of hard sediment

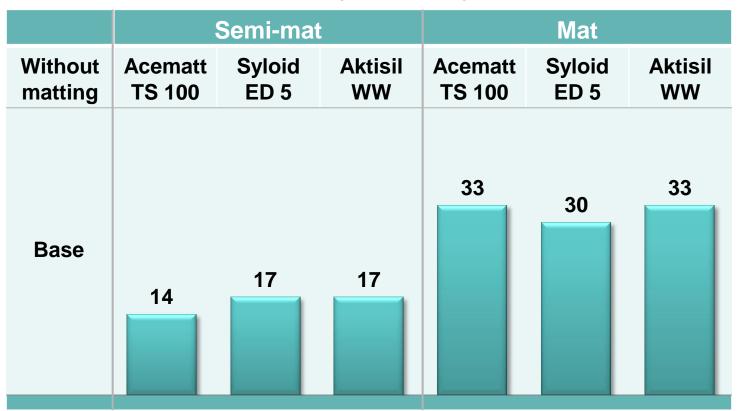
Tests carried out in 50 ml bottles

EXPERIMENTAL

RESULTS

 Processing properties and storage stability

SUMMARY



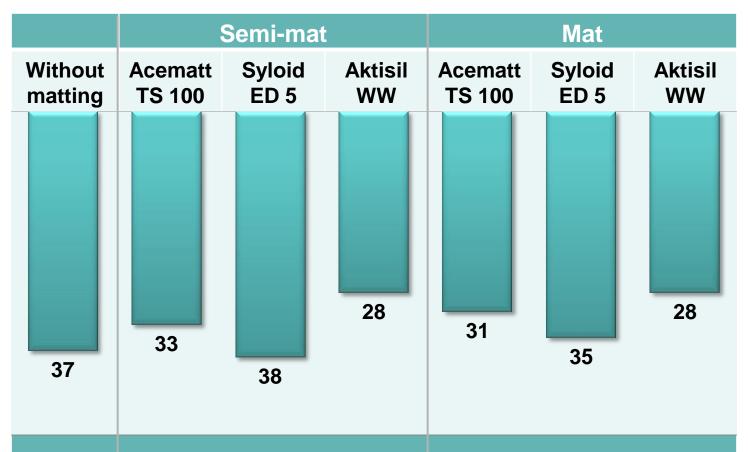
Dry Through Time Improvement

Reduction of drying time [%] compared to Base at DFT 30 µm

Erichsen method, no surface damage with sliding wire bow

EXPERIMENTAL

RESULTS


SUMMARY

Abrasion Resistance

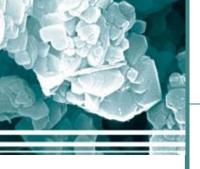
Volume loss [mm³] per 500 revolutions Taber CS17, 1 kg, DFT 30µm

back to selection

Optical Properties

INTRODUCTION

EXPERIMENTAL


RESULTS

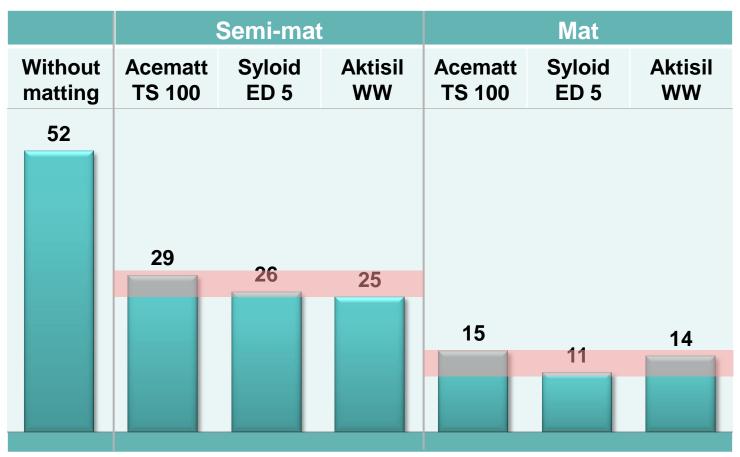
SUMMARY

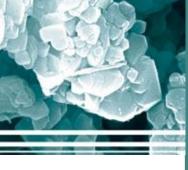
Appearance on wood

EXPERIMENTAL

RESULTS

Optical properties


SUMMARY



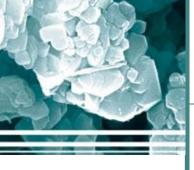
Matting

Gloss 60°, DFT 30 µm

Appearance on Wood

INTRODUCTION

EXPERIMENTAL


RESULTS

Optical properties

SUMMARY

Water, Alcohol and Ink Resistance

INTRODUCTION

EXPERIMENTAL

RESULTS

SUMMARY

- At early stage, 15 h after film application
- 28 d after film application according to DIN 68861-1,1A
- Ink resistance optimization

EXPERIMENTAL

RESULTS

· Water, Alcohol and Ink resistance

SUMMARY

Water Resistance

			Mat				
DFT 90 (3 x 30)		Without matting	Acematt TS 100	Syloid ED 5	Aktisil WW		
Drying	Exposure		2.5 pbw	2.5 pbw	11.5 pbw		
15 h	1 h						
15 h	16 h						
28 d	16 h						

Alcohol Resistance Ethanol 48%

INTRODUCTION

EXPERIMENTAL

RESULTS

 Water, Alcohol and Ink resistance

SUMMARY

				Mat	
DFT 90 μm (3 x 30)		Without matting	Acematt TS 100	Syloid ED 5	Aktisil WW
Drying	Exposure		2.5 pbw	2.5 pbw	11.5 pbw
15 h	1 h				
15 h	16 h				
28 d	16 h				

EXPERIMENTAL

RESULTS

 Water, Alcohol and Ink resistance

SUMMARY

Ink Resistance

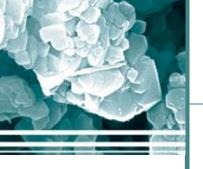
		Mat								
DFT 90 μm (3 x 30)		Without matting			Aktisil WW					
Drying	Exposure		2.5 pbw	2.5 pbw	11.5 pbw					
15 h	1 h									
15 h	5 h									
28 d	16 h		0	0	0					

EXPERIMENTAL

RESULTS

 Water, Alcohol and Ink resistance

SUMMARY



Ink Resistance Optimization

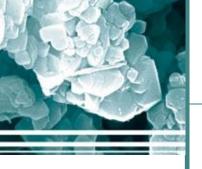
Measures investigated for mat coatings:

- 1. Efflux time adjusted to 100 s by less water / thickener content
- 2. Entirely without thickening agent lowering efflux time to 15 20 s
- 3. Equivalent conditions of 2. but change of cosolvent.
 Butyldiglycol (BDG) / Butylglycol (BG) replaced by pure
 Dipropylene glycol monomethyl ether (DPM) by weight

EXPERIMENTAL

RESULTS

· Water, Alcohol and Ink resistance


SUMMARY

Ink Resistance Optimization HOFFMANN Drying 15 h / Exposure 5 h MINERAL

	DFT	90 µn	ı (3 x 3	0)			Mat		
			pby			Efflux	Acematt	Syloid	Aktisil
	BDG / BG			Water demin.	DSX 1514	time DIN 4	TS 100	ED 5	WW
	, 50		deriiii.	dilution	1014	[s]	2.5 pbw	2.5 pbw	11.5 pbw
	6/2		7.5	4.0-7.8	regular	150	0	•	
1.	6/2				reduced	100	0	•	
2.	6/2					15-20	0	•	
3.		8				15-20	Color penetrat	ing into wood	9

EXPERIMENTAL

RESULTS

 Water, Alcohol and Ink resistance

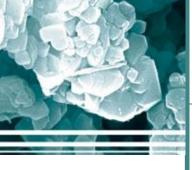
SUMMARY

Ink Resistance Optimization HOFFMANN Drying 28 d / Exposure 16 h MINIERAL

	DFT	90 µn	n (3 x 3	0)			Mat		
	_		pby		-	Efflux	Acematt	Syloid	Aktisil
	BDG / BG	DPM	Water demin.	Water demin. dilution	DSX 1514	time DIN 4 [s]	TS 100 2.5 pbw	ED 5 2.5 pbw	WW 11.5 pbw
	6/2		7.5	4.0-7.8	regular	150	•	0	•
1.	6/2				reduced	100	0	0	0
2.	6/2					15-20	0	•	0
3.		8				15-20	0	•	

EXPERIMENTAL

RESULTS


SUMMARY

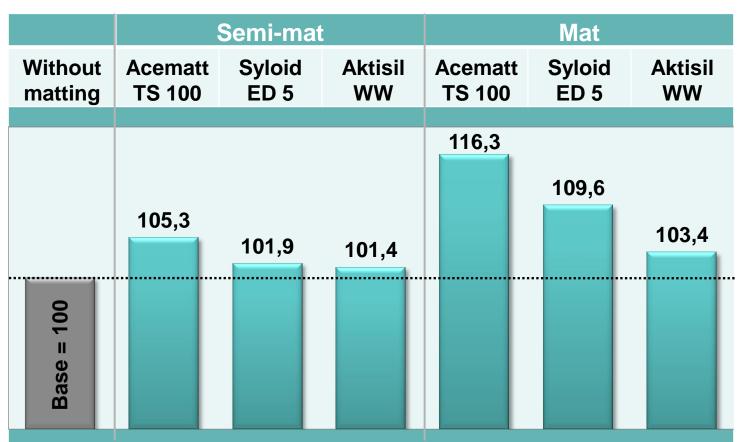
Spreading Rate and Cost Calculations

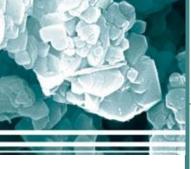
- At application viscosity
 - Formulation Costs
 - Spreading Rate
 - Overall System Costs

EXPERIMENTAL

RESULTS

Spreading rate and cost calculations


SUMMARY



Formulation Costs (€/L) at Application Viscosity

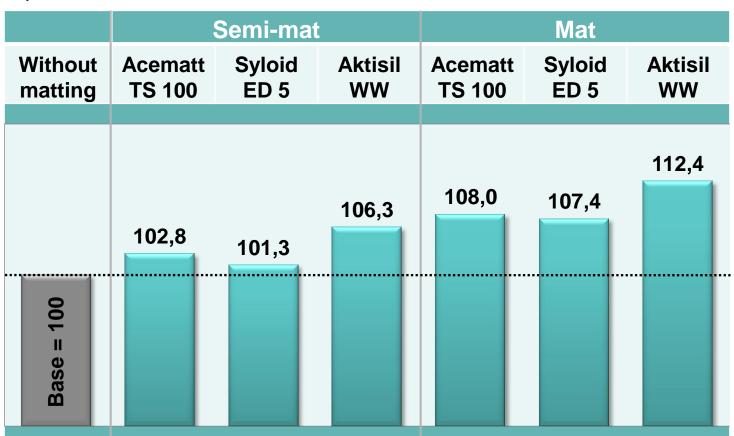
Base "Without matting", Index [%] (Germany 2012)

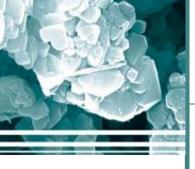
EXPERIMENTAL

RESULTS

Spreading rate and cost calculations

SUMMARY




Spreading Rate (m²/L) at Application Viscosity

Base "Without matting", Index [%] (Germany 2012)

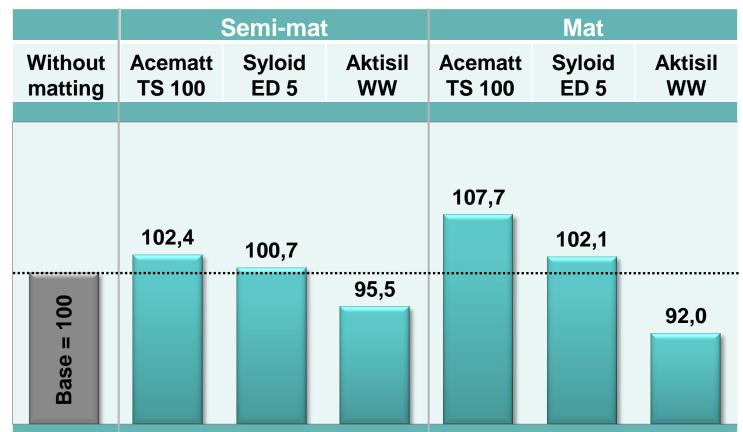
Equivalent DFT

EXPERIMENTAL

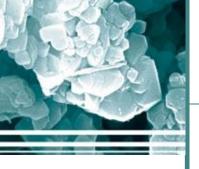
RESULTS

 Spreading rate and cost calculations

SUMMARY



Overall System Costs (€/m²)_{HCFFMANN} at Application Viscosity


MINERAL

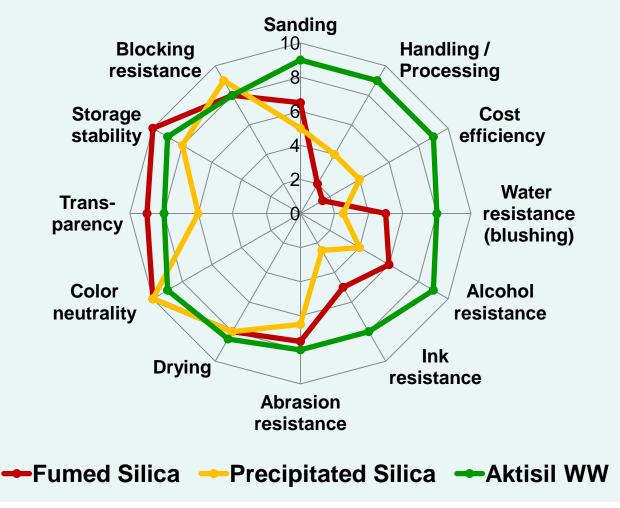
Base "Without matting", Index [%] (Germany 2012)

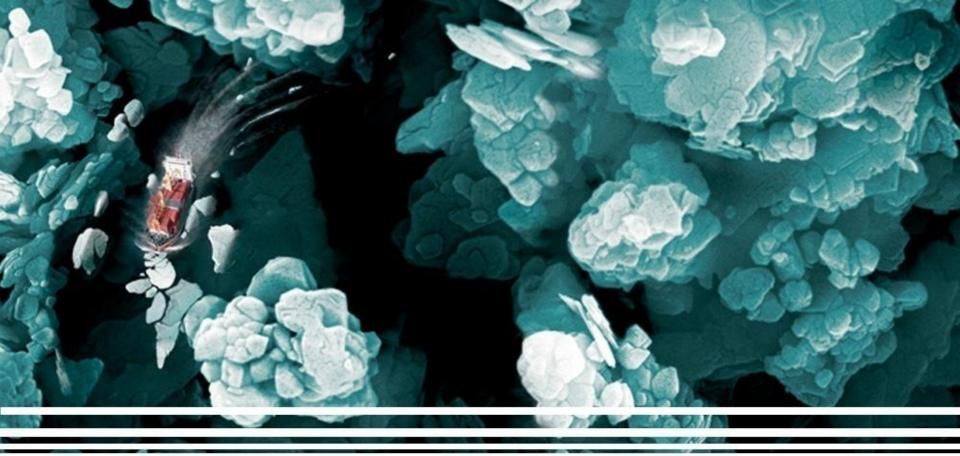
Considering formulation costs and spreading rate, equivalent DFT

back to selection forward to summary

EXPERIMENTAL

RESULTS


SUMMARY



Overall Performance

Gloxil WW

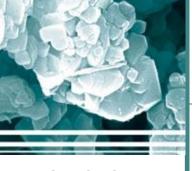
Functional Matting Agent for Water-based Clear Coats for Wood

EXPERIMENTAL

RESULTS

SUMMARY

Objective



Performance of Gloxil WW versus established Silica gel matting agent in a water-based clear coat for wood

GLOXIL WW

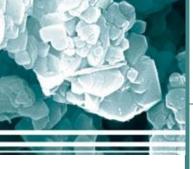
is matting agent on silica gel basis (Precipitated Silica) that has been modified by treatment with a special additive

First product of Hoffmann Mineral which is not based on our Neuburg Siliceous Earth since more than 20 Years

EXPERIMENTAL

RESULTS

SUMMARY



Base Formulation

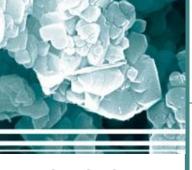
		pbw *
Alberdingk AC 2514	Binder, acrylic emulsion, self-crosslinking, MFFT 43 °C	79.4
Byk 024	Defoamer	0.8
Butyl diglycol	Cosolvent	6.0
Butyl glycol	Cosolvent	2.0
Water demineralized		7.5
Matting agent	Silica gel or Gloxil WW	varied X
Aquamat 272	Wax dispersion	3.3
Byk 346	Wetting agent	0.4
DSX 1514	Thickener	0.5
Total		99.9 + X

^{*} Parts by weight

Formulation Variations

INTRODUCTION

EXPERIMENTAL


RESULTS

SUMMARY

Solids content w/w	[%]	37.2	38.7	38.4	39.6	40.7
PVC	[%]	0.0	3.9	4.7	9.0	12.9

EXPERIMENTAL

RESULTS

SUMMARY

Matting Agent

Characteristics

		Silica gel	Gloxil WW
Density	[g/cm³]	2.0	1.3
Particle size d ₅₀	[µm]	9	8
Oil absorption	[g/100g]	320	120
Specific surface area, BET	[m²/g]	400	unquantifyable
Surface treatment		no	yes

EXPERIMENTAL

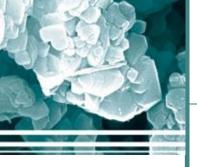
RESULTS

SUMMARY

Results

• Properties without significant difference

Processing properties and storage stability


Matting / Transparency / Appearance on wood

• Water, alcohol and ink resistance

EXPERIMENTAL

RESULTS

SUMMARY

Properties Without Significant Difference MINERAL

Evaluation after 28 d:

- Color
- Adhesion to wood
- Hardness of coating
- Abrasion resistance Taber S42 / CS17
- Burnish resistance
- Metal marking resistance
- Scratch resistance
- Blocking resistance

Handling of powder material

INTRODUCTION

EXPERIMENTAL

RESULTS

 Processing properties and storage stability

SUMMARY

Gloxil WW

Bulk volume

equal weight

Reduced dust formation

Reduced adhesion on surfaces

EXPERIMENTAL

RESULTS

 Processing properties and storage stability

SUMMARY

Preparation / Storage

	Silica gel	Gloxil WW		
Incorporation				
Dispersibility				
Reduced foam formation				
Deaeration 12 h				
Viscosity	Efflux time 15 - 16 s in DIN 4 mm			
Storage stability 10 weeks 23 °C	Slight settling of matting agent, easy to re-stir and to homogenize			

EXPERIMENTAL

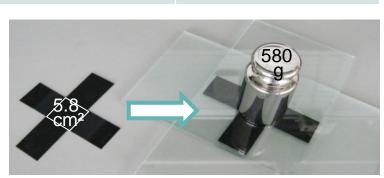
RESULTS

 Processing properties and storage stability

SUMMARY

Application Process

	Silica gel	Gloxil WW
Drying		
Sanding 24 h		



in appendix

details

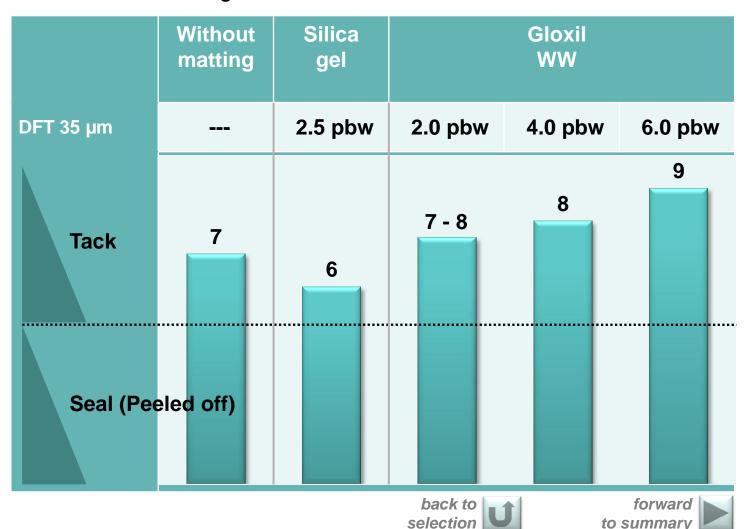
Coated leneta strips "face to face" crossed

- DFT 35 μm
- Drying 24 h / 23°C / 50% rh
- Pressing 24 h / 100 g/cm² / 23°C

EXPERIMENTAL

RESULTS

 Processing properties and storage stability


SUMMARY

Early Blocking Resistance 24 h

Evaluation according to ASTM D 4946, 0 = worst, 10 = best

EXPERIMENTAL

RESULTS

Optical properties

SUMMARY

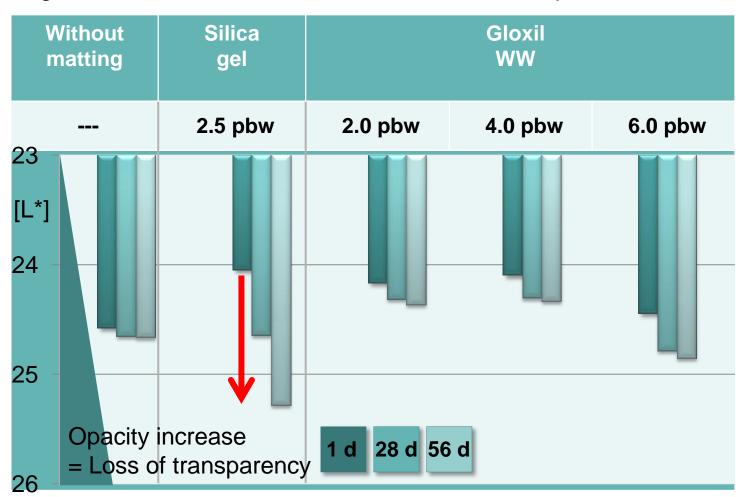
Matting

Gloss level, DFT 35 µm

EXPERIMENTAL

RESULTS

Optical properties


SUMMARY

Transparency

Brightness L* on black contrast cardboard, DFT 35 µm

EXPERIMENTAL

RESULTS

Optical properties

SUMMARY

Appearance on Wood

Beech / American Walnut Drying 28 d, DFT 105 µm (3 x 35)

Without matting	Silica gel		Gloxil WW	
	2.5 pbw	2.0 pbw	4.0 pbw	6.0 pbw
Beech American Walnut	Brightening o o o			

back to selection

forward to summary

EXPERIMENTAL

RESULTS

 Water, alcohol and ink resistance

SUMMARY

Water Resistance

Early stage and 28 d after application acc. to DIN 68861-1, 1A

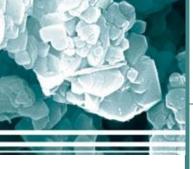
DFT 10 (3 x 35)		Without matting	Silica gel	Gloxil WW		
Drying	Exposure		2.5 pbw	2.0 pbw	4.0 pbw	6.0 pbw
15 h	1 h					
15 h	16 h					
28 d	16 h					

EXPERIMENTAL

RESULTS

 Water, alcohol and ink resistance

SUMMARY



Alcohol Resistance

80 d after application, exposure time 16 h

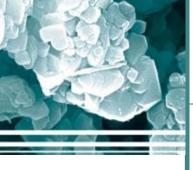
DFT 105 μm (3 x 35)	Without matting	Silica gel	Gloxil WW		
		2.5 pbw	2.0 pbw	4.0 pbw	6.0 pbw
Ethanol 48 %					
Water (for comparison)					

EXPERIMENTAL

RESULTS

 Water, alcohol and ink resistance

SUMMARY



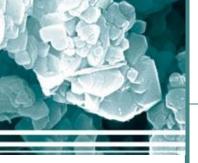
Ink Resistance

Early stage and 28 d after application acc. to DIN 68861-1, 1A

DFT 10 (3 x 35		Without matting	Silica gel	Gloxil WW		
Drying	Exposure		2.5 pbw	2.0 pbw	4.0 pbw	6.0 pbw
15 h	1 h		Blushing effect			
15 h	5 h					
28 d	16 h	0	0	0	0	

EXPERIMENTAL


RESULTS


SUMMARY

Overall Performance

Thank you very much!

HOFFMANN MINERAL GmbH • P.O.Box 14 60 • D-86619 Neuburg (Donau)
Phone +49 (0) 8431-53-0 • Fax +49 (0) 8431-53-3 30

Internet: www.hoffmann-mineral.com • e-Mail: info@hoffmann-mineral.com

Our applications engineering advice and the information contained in this memorandum are based on experience and are made to the best of our knowledge and belief, they must be regarded however as non-binding advice without guarantee. Working and employment conditions over which we have no control exclude any damage claim arising from the use of our data and recommendations. Furthermore we cannot assume any responsibility for patent infringements, which might result from the use of our information.