RICHTREZEPTUR || Seite 1 von 2

Dichtstoff auf Basis MS Polymer™ 30 Shore A

Basis silanterminierter Polyether

		SILLITIN Z 86	AKTISIL PF 777
V44423.1		[5]	[20]
MS Polymer™ S303H	(1)	100	100
Jayflex DIUP	(2)	100	100
Sachtleben R-FK-2	(3)	20	20
Crayvallac SLX	(4)	5	5
SILLITIN Z 86	(5)	180	
AKTISIL PF 777	(5)		180
Tinuvin 770	(6)	1	1
Tinuvin 327	(6)	1	1
Dynasylan VTMO	(7)	2	2
Dynasylan AMEO	(7)	5	5
Katalysator (Dibutylzinndiacetylacetonat)		2	2
Summe GewTeile		416	416

Anmerkung

Diese Formulierung soll grundsätzliche Effekte der verschiedenen Neuburger Kieselerde Produkte aufzeigen, wobei die verwendeten Rohstoffe teilweise nicht mehr dem Stand der Technik entsprechen oder anderen Einschränkungen unterliegen.

Empfehlung

Helle Farbtöne können mit SILLITIN Z 89 dargestellt werden.

Für bessere Dispergierbarkeit und mechanische Eigenschaften wird die Verwendung von SILLITIN Z 86 PURISS empfohlen.

AKTISIL PF 777 (Rezeptur 20) erhöht die Chemikalienbeständigkeit der Formulierung.

Mischen

Zur Herstellung eignet sich ein Planetenmischer mit einer Kombination aus Dissolverscheibe, Balkenrührer und Abstreifer.

- Füllstoff und Titandioxid vortrocknen
- Bindemittel, Weichmacher, Lichtschutzmittel und Rheologieadditiv vorlegen
- Füllstoff und Titandioxid einrühren und 45 min unter Vakuum dispergieren, dabei die Mischungstemperatur für 30 Minuten zwischen 60 und 90°C halten, um das Rheologieadditiv zu aktivieren
- nach Abkühlen der Formulierung auf 50°C in 5-minütigem Abstand nacheinander Trocknungsmittel, Haftvermittler und Katalysator zugeben und einmischen
- kurz entlüften und in eine Kartusche abfüllen.

RICHTREZEPTUR || Seite 2 von 2

				SILLITIN Z 86	AKTISIL PF 777		
	V44423.1			[5]	[20]		
Technische Daten	Härte	DIN ISO 7619-1	Shore A	31	28		
	Zugfestigkeit	DIN 53504, S2	MPa	2,4	2,0		
	Spannungswert 25 %	DIN 53504, S2	MPa	0,4	0,3		
	Spannungswert 50 %	DIN 53504, S2	MPa	0,6	0,5		
	Spannungswert 100 %	DIN 53504, S2	MPa	1,3	0,9		
	Reißdehnung	DIN 53504, S2	%	212	384		
	Zugscherfestigkeit (ZSF) Aluminium 99,5 (12,5 x 25 x	DIN EN 1465	MPa	1,50	1,31		
	Verformbarkeit bei ZSF	DIN EN 1465	mm	6,6	8,8		
	Chemikalienbeständigkeit						
	Lagerung in 10 %-iger Schw						
	Volumenänderung		%	+6,8	+1,4		
	Zugfestigkeit	DIN 53504, S2	MPa	1,8	1,8		
	Reißdehnung	DIN 53504, S2	%	268	376		
	∆ Zugfestigkeit		%	-26,9	-9,6		
	∆ Reißdehnung		%, rel.	+26,5	-2,1		
	Lagerung in deionisiertem Wasser, 7d/50°C						
	Zugscherfestigkeit (ZSF) Aluminium 99,5 (12,5 x 25 x	DIN EN 1465 2 mm)	MPa	1,24	1,18		
	ZSF nach Rücktrocknung be	•	MPa	1,53	1,46		
	∆ Zugscherfestigkeit		%	-17,3	-9,9		
	∆ ZSF nach Rücktrocknung		%	+2,0	+11,5		

Hersteller

- Kaneka (1)
- (2) ExxonMobil
- (3) **Venator Materials Corporation**
- (4) Cray Valley
- **HOFFMANN MINERAL** (5)
- (6) **BASF**
- **Evonik Industries** (7)

Weitere Informationen zu diesem Thema:

Neuburger Kieselerde in Dichtstoffen auf Basis MS Polymer

Unsere anwendungstechnische Beratung und die Informationen in diesem Merkblatt beruhen auf Erfahrung und erfolgen nach bestem Wissen und Gewissen, gelten jedoch nur als unverbindlicher Hinweis ohne jede Garantie. Außerhalb unseres Einflusses liegende Arbeits- und Einsatzbedingungen schließen einen Anspruch aus der Anwendung unserer Daten und Empfehlungen aus. Außerdem können wir keinerlei Verantwortung für Patentverletzungen übernehmen, die möglicherweise aus der Anwendung unserer Angaben resultieren.

