

Optimierung der Korrosionsschutzeigenschaften von wässrigen 2K-Epoxy-Klarlacken mit Neuburger Kieselerde

Autor: Susanne Reiter

Inhalt

- Einleitung
- Experimentelles
- Ergebnisse

Applikationsviskosität

Flexibilität und Haftung

Prüfung von Tiefung und Gitterschnitt

Korrosionsbeständigkeit

- Kondenswassertest (Blasen- und Rostgrad, Transparenz, weißes Anlaufen)
- Salzsprühtest (Enthaftung am Ritz)
- Zusammenfassung
- Anhang
 Herstellung, Optik, Pendelhärte
 weitere Ergebnisse Korrosionsbeständigkeit

Status Quo

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

ANHANG

 Korrosionsschutzlacke mit ausreichend schützenden Eigenschaften konnten bis jetzt nur mit Hilfe von Korrosionsschutzpigmenten hergestellt werden.

 Bei der Verwendung von Pigmenten ist jedoch keine Anwendung als Klarlack möglich.

> Kann mit Neuburger Kieselerde beides realisiert werden?

Zielsetzung

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

ANHANG

Folgendes Anforderungsprofil soll durch den Einsatz von Neuburger Kieselerde erfüllt werden:

- Ausreichende Flexibilität und hervorragende Haftung bei der Verwendung von unterschiedlichen Substraten.
- Gute Transparenz.
- Kein weißes Anlaufen des Klarlacks nach Belastung im Kondenswassertest.
- Verbesserung der Korrosionsschutzeigenschaften.

Füllstoffe und Kennwerte

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

ANHANG

Füllstoff	Beschreibung	Oberflächen- behandlung		
Sillitin Z 89	Neuburger Kieselerde d ₅₀ : 1,8 μm, d ₉₇ : 7,1 μm	keine		
Silfit Z 91	Kalzinierte Neuburger Kieselerde d ₅₀ : 2,0 μm, d ₉₇ : 8,6 μm	keine		
Aktisil AM	Neuburger Kieselerde d ₅₀ : 2,2 μm, d ₉₇ : 10 μm	amino- funktionalisiert		
TP 2008037	Neuburger Kieselerde Testprodukt ähnlich Aktisil AM, aber farbneutraler d ₅₀ : 2,2 µm, d ₉₇ : 8,3 µm	amino- funktionalisiert		

Füllstoffe und Kennwerte

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

ANHANG

Füllstoff	Ölzahl [g/100g]	Spezifische Oberfläche BET [m²/g]
Sillitin Z 89	55	11
Silfit Z 91	55	8
Aktisil AM	45	9
TP 2008037	61	9

Füllstoffe und Kennwerte

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

ANHANG

Füllstoff	Farbe L*	Farbe a*	Farbe b*
Sillitin Z 89	94,7	-0,1	3,4
Silfit Z 91	95,3	-0,2	0,9
Aktisil AM	93,0	0,5	8,1
TP 2008037	94,8	-0,1	3,4

Basisrezeptur

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

ANHANG

	Beschreibung	Gewichtsteile
A-Komponente: BECKOCURE™ EH 2260w/41WA *1	aminischer Härter	61,1
B-Komponente: BECKOPOX™ EP 147w *1 BECKOPOX™ EP 386w/52WA *1	Epoxidharze	12,5 37,5
Total	111,1	
Festkörper [%]	51,4	

^{*1} http://allnex.com/the-easy-cure-system

Formulierungen

Gewichtsteile

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

ANHANG

	Kontrolle	Sillitin Z 89 15 GT	Silfit Z 91 15 GT	Aktisil AM 15 GT	Aktisil AM 25 GT	TP 2008037 25 GT
A-Komponente (Aminhärter)	61,1	61,1	61,1	61,1	61,1	61,1
+ Füllstoff	0	15	15	15	25	25
B-Komponente	50	50	50	50	50	50
Total	111,1	126,1	126,1	126,1	136,1	136,1
Festkörper [%]	51,4	57,1	57,1	57,1	60,3	60,3
PVK [%]	0	9,9	9,9	9,9	15,5	15,5

Formulierungen

Prozent

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

ANHANG

	Kontrolle	Sillitin Z 89 15 GT	Silfit Z 91 15 GT	Aktisil AM 15 GT	Aktisil AM 25 GT	TP 2008037 25 GT
A-Komponente (Aminhärter)	55	48,45	48,45	48,45	44,90	44,90
+ Füllstoff	0	11,90	11,90	11,90	18,37	18,37
B-Komponente	45	39,65	39,65	39,65	36,73	36,73
Total	100	100	100	100	100	100
Festkörper [%]	51,4	57,1	57,1	57,1	60,3	60,3
PVK [%]	0	9,9	9,9	9,9	15,5	15,5

Herstellung / Applikation / Substrate / Trocknung

EINLEITUNG

Herstellung: Dissolver mit Perlmühle APS 1000

EXPERIMENTELLES

<u>Applikation:</u> Druckluftspritzen,

ERGEBNISSE

Walther Pilot Spritzpistole

Düsendurchmesser 2 mm, ca. 1,7 bar

ZUSAMMENFASSUNG

Substrat: Aluminium: Gardobond F,

Stahl: Gardobond OC,

beide ohne Vorbehandlung

ANHANG

Trocknung: 30 min bei 60°C

Trockenschichtdicke: 50-80 μm

Prüfungen: nach 7 Tagen bei 23 °C / 50% rF

Einstellung Applikationsviskosität

Komponente A und B gemischt plus Wasser zur Verdünnung

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

Applikationsviskosität

ZUSAMMENFASSUNG

ANHANG

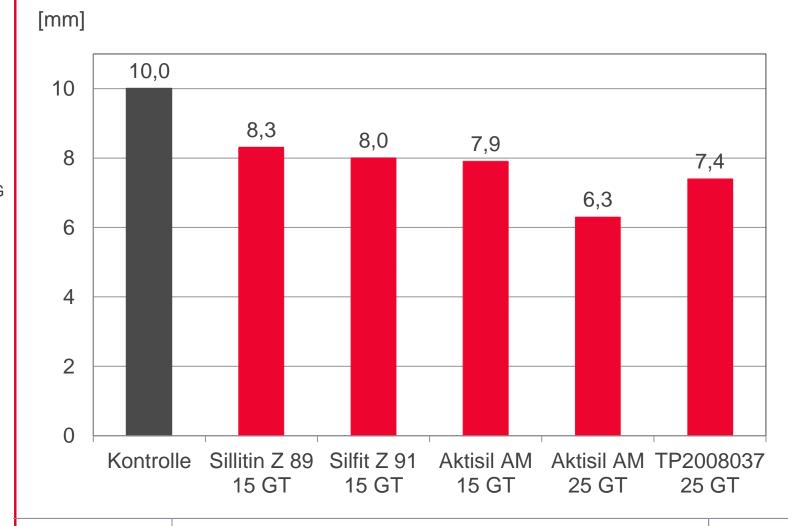
	Kontrolle	Sillitin Z 89 15 GT	Silfit Z 91 15 GT	Aktisil AM 15 GT	Aktisil AM 25 GT	TP 2008037 25 GT	
Wasser [%]	Soll ~ 3,0 lst 3,8	4,7	5,0	Soll ~ 5,0 lst 6,8	Soll ~ 7,5 lst 5,6	Soll ~ 7,5 lst 4,9	
resultierende Viskosität bei 25 s ⁻¹ [Pa*s] *1	1,5	1,9	1,8	1,4	2,6	2,4	
Festkörper [%]	49,5	54,6	54,4	53,5	57,1	57,5	

^{*1} Angestrebte Applikationsviskosität bei 25 s-1: 1,8 – 2,0 Pa*s

Tiefungsprüfung

Stahl

EINLEITUNG


EXPERIMENTELLES

ERGEBNISSE

Flexibilität

ZUSAMMENFASSUNG

ANHANG

VM-0/0416/04.2016

Gitterschnittprüfung (1mm)

Stahl und Aluminium

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

Haftung

ZUSAMMENFASSUNG

ANHANG

Alle Formulierungen zeigen exzellente Haftung zum Substrat Gitterschnittkennwert 0

Kondenswassertest 240 h

DIN EN ISO 6270-2 CH

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

 Korrosionsbeständigkeit

ZUSAMMENFASSUNG

ANHANG

Beurteilung von:

- Blasengrad DIN EN ISO 4628-2
- Rostgrad DIN EN ISO 4628-3
- Transparenz / weißes Anlaufen per Delta E

Kondenswassertest 240 h Blasengrad und Rostgrad

Stahl und Aluminium

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

 Korrosionsbeständigkeit

ZUSAMMENFASSUNG

ANHANG

Alle Formulierungen

keine Blasenbildung

und kein Rost, alle Ri 0

EINLEITUNG

ERGEBNISSE

 Korrosionsbeständigkeit

ANHANG

EXPERIMENTELLES

ZUSAMMENFASSUNG

Kondenswassertest 240 h Transparenz Delta E

Stahl

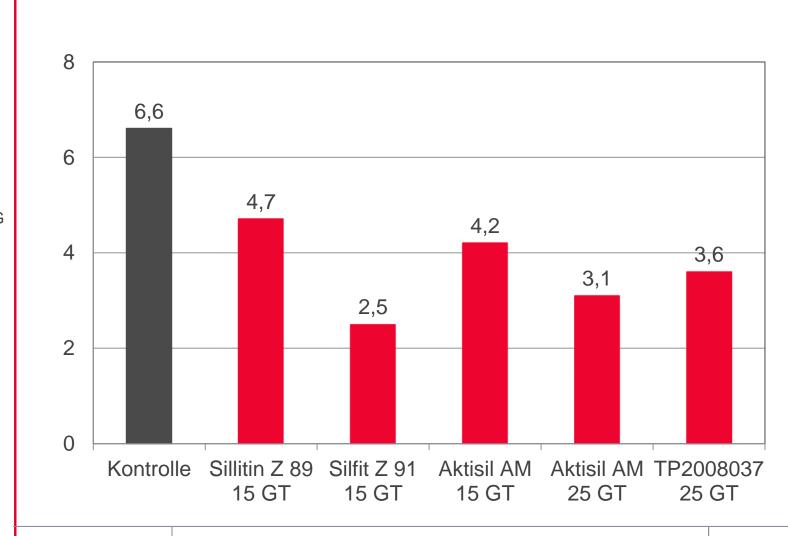
Kontrolle

Starkes Weißanlaufen, deutliche Beeinträchtigung der Transparenz Silfit Z 91

Signifikante Verbesserung

Kondenswassertest 240 h Transparenz Delta E

EINLEITUNG


EXPERIMENTELLES

ERGEBNISSE

 Korrosionsbeständigkeit

ZUSAMMENFASSUNG

ANHANG

Stahl

Salzsprühtest 240 h

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

 Korrosionsbeständigkeit

ZUSAMMENFASSUNG

ANHANG

DIN EN ISO 9227

Mit einem Ritzstichel nach van Laar angeritzt

Beurteilung von:

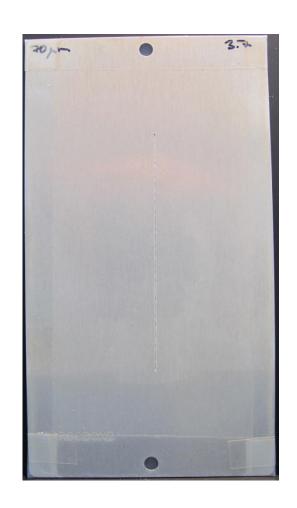
Enthaftung am Ritz DIN EN ISO 4628-8

VM-0/0416/04.2016

Salzsprühtest 240 h Enthaftung

Aluminium

EINLEITUNG


EXPERIMENTELLES

ERGEBNISSE

 Korrosionsbeständigkeit

ZUSAMMENFASSUNG

ANHANG

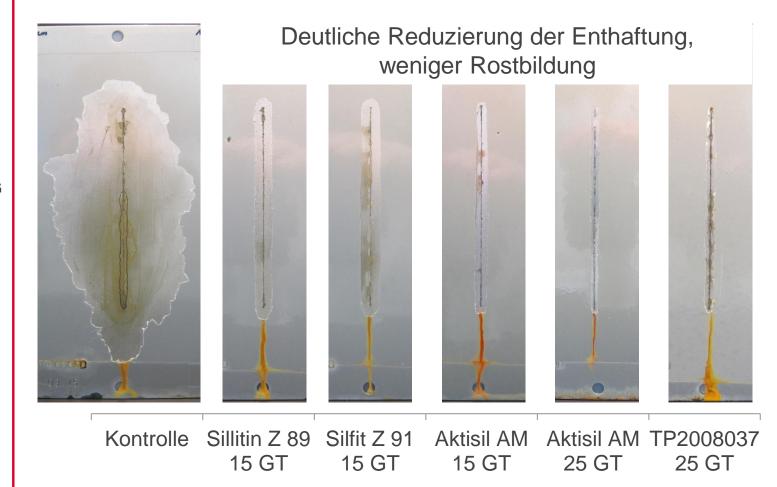
Alle Formulierungen

keine Enthaftung = 0 mm

Salzsprühtest 240 h Enthaftung

Stahl

EINLEITUNG


EXPERIMENTELLES

ERGEBNISSE

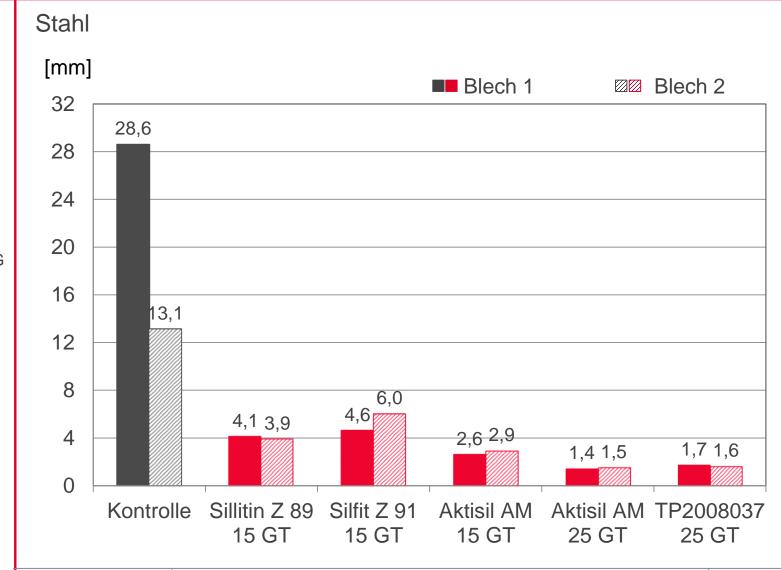
 Korrosionsbeständigkeit

ZUSAMMENFASSUNG

ANHANG

Salzsprühtest 240 h Enthaftung

EINLEITUNG


EXPERIMENTELLES

ERGEBNISSE

 Korrosionsbeständigkeit

ZUSAMMENFASSUNG

ANHANG

Weitere Ergebnisse im Anhang

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

ANHANG

Informationen zur Herstellung der Formulierungen

- Optik
 - ➤ Farbe L* a* b*
 - ➢ Glanz
- Mechanik
 - ➤ Pendelhärte (König) 🕟
- Korrosionsbeständigkeit
 - ➤ Kondenswassertest, Haftung und Glanz 🕞
 - ➤ Salzsprühtest, Glanz und Farbänderung

Zusammenfassung

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

ANHANG

Ein wässriger 2 K Epoxy Klarlack mit Neuburger Kieselerde bietet folgendes Qualitätsprofil:

- Transparenz und Farbneutralität, besonders bei Verwendung von Silfit Z 91
 - hoher Glanz (60°: > ~ 80)
 - ausgezeichnete Haftung zum Substrat (Gitterschnittkennwert 0-1)
 - gute Flexibilität (Tiefungsprüfung 6-8 mm)
 - bestes Preis-Leistungsverhältnis, besonders bei Verwendung von Sillitin Z 89

Zusammenfassung

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

ANHANG

Ein wässriger 2 K Epoxy Klarlack mit Neuburger Kieselerde bietet folgendes Qualitätsprofil:

- Kein weißes Anlaufen des Klarlacks nach Belastung im Kondenswassertest, Erhalt von Transparenz und Farbneutralität über die Dauer der Belastung, besonders bei Verwendung von Silfit Z 91 mit 15 GT.
- Signifikante Verbesserung der Korrosionsbeständigkeit: wird das Aktisil AM oder das farbneutralere TP 2008037 eingesetzt, so ist die Enthaftung am Ritz minimal. Diese Optimierung ist besonders in der PVK erhöhten Variante (25 GT) deutlich sichtbar.

Wir geben Stoff für gute Ideen!

HOFFMANN MINERAL GmbH

Münchener Straße 75

DE-86633 Neuburg (Donau)

Telefon: +49 8431 53-0

Internet: www.hoffmann-mineral.de E-Mail: info@hoffmann-mineral.com

Unsere anwendungstechnische Beratung und die Informationen in diesem Bericht beruhen auf Erfahrung und erfolgen nach bestem Wissen und Gewissen, gelten jedoch nur als unverbindlicher Hinweis ohne jede Garantie. Außerhalb unseres Einflusses liegende Arbeits- und Einsatzbedingungen schließen einen Anspruch aus der Anwendung unserer Daten und Empfehlungen aus. Außerdem können wir keinerlei Verantwortung für Patentverletzungen übernehmen, die möglicherweise aus der Anwendung unserer Angaben resultieren.

Herstellung

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

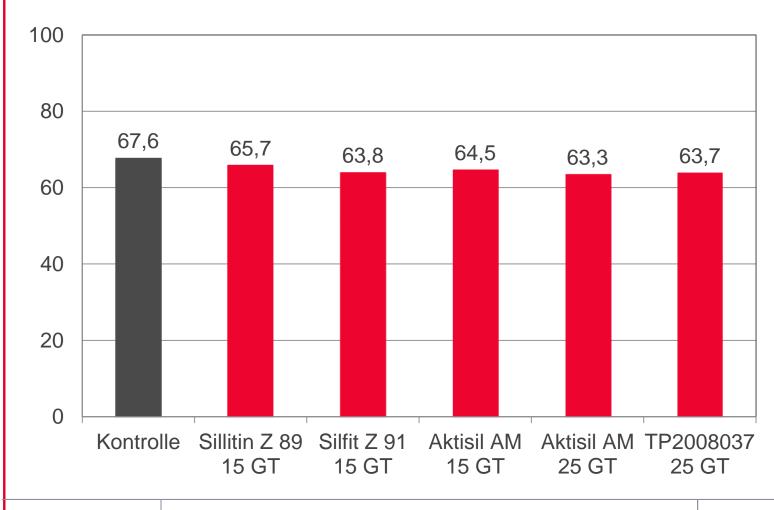
ANHANG

- Perlmühle APS 1000 (mit Glasperlen 2mm)
- Ansatzgröße A-Komponente ca. 350g ≙ 290mL
- 10 min lang anreiben bei 2000 UpM ≜ 7,9 m/s Umfangsgeschwindigkeit, mit Wasserkühlung → Temperatur ca. 30°C

Farbe Helligkeit

CIE L*, Stahl

EINLEITUNG


EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

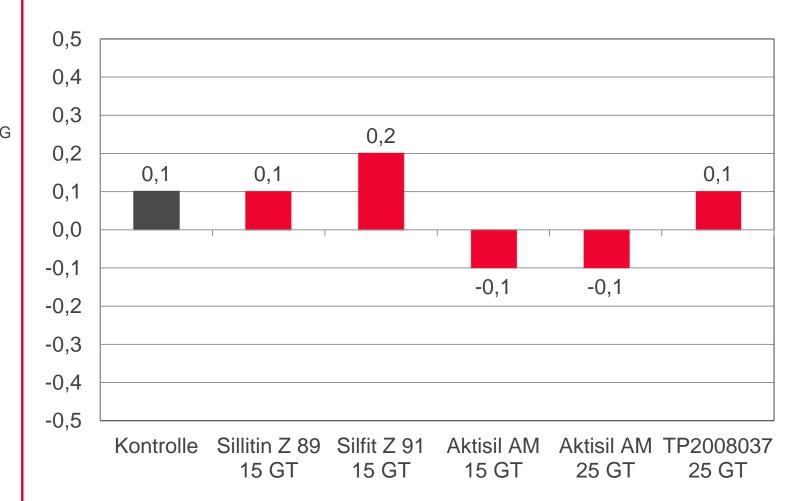
ANHANG

VM-0/0416/04.2016

Farbe Rot/grün Anteil

CIE a*, Stahl

EINLEITUNG


EXPERIMENTELLES

ERGEBNISSE

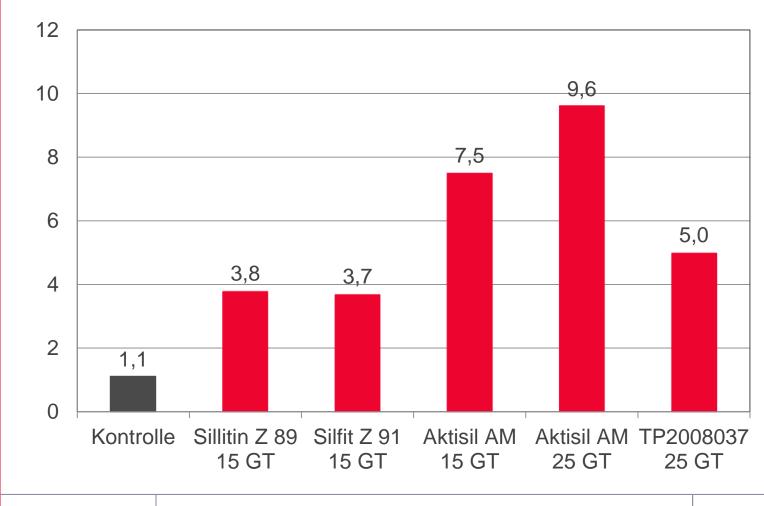
ZUSAMMENFASSUNG

<u>ANHANG</u>

Farbe Gelb/blau Anteil

CIE b*, Stahl

EINLEITUNG


EXPERIMENTELLES

ERGEBNISSE

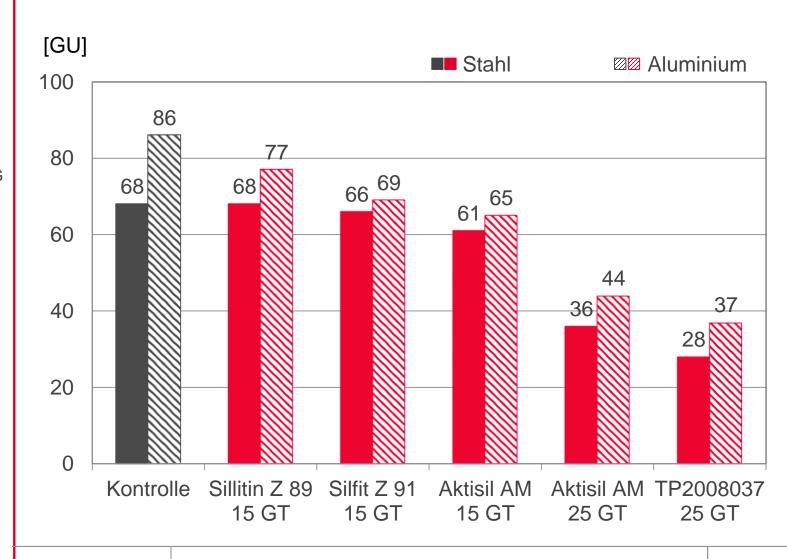
ZUSAMMENFASSUNG

ANHANG

VM-0/0416/04.2016

Glanz 20°

EINLEITUNG


EXPERIMENTELLES

ERGEBNISSE

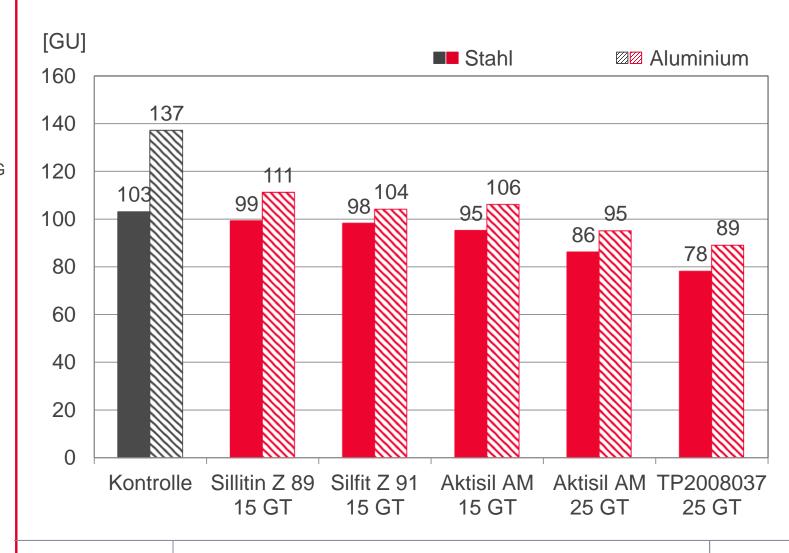
ZUSAMMENFASSUNG

ANHANG

VM-0/0416/04.2016

Glanz 60°

EINLEITUNG


EXPERIMENTELLES

ERGEBNISSE

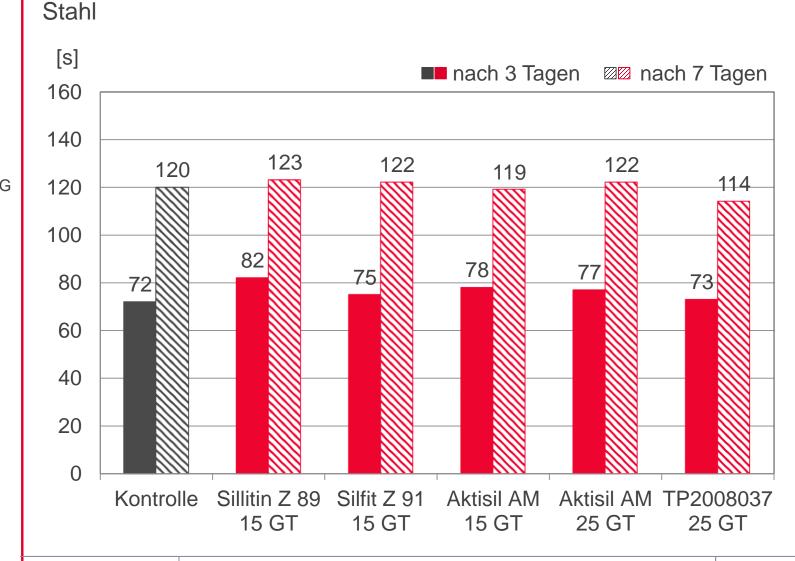
ZUSAMMENFASSUNG

ANHANG

VM-0/0416/04.2016

Pendelhärte

EINLEITUNG


EXPERIMENTELLES

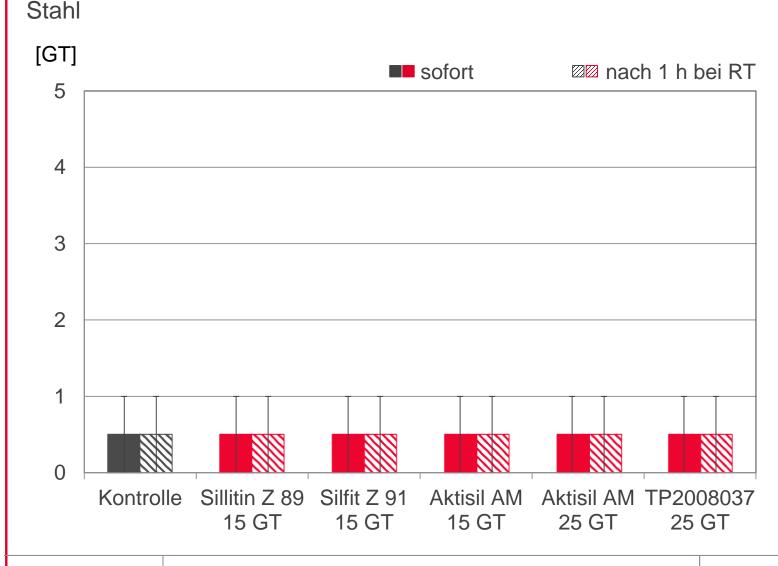
ERGEBNISSE

ZUSAMMENFASSUNG

ANHANG

VM-0/0416/04.2016

Kondenswassertest 240 h Gitterschnitt (1mm)


EXPERIMENTELLES

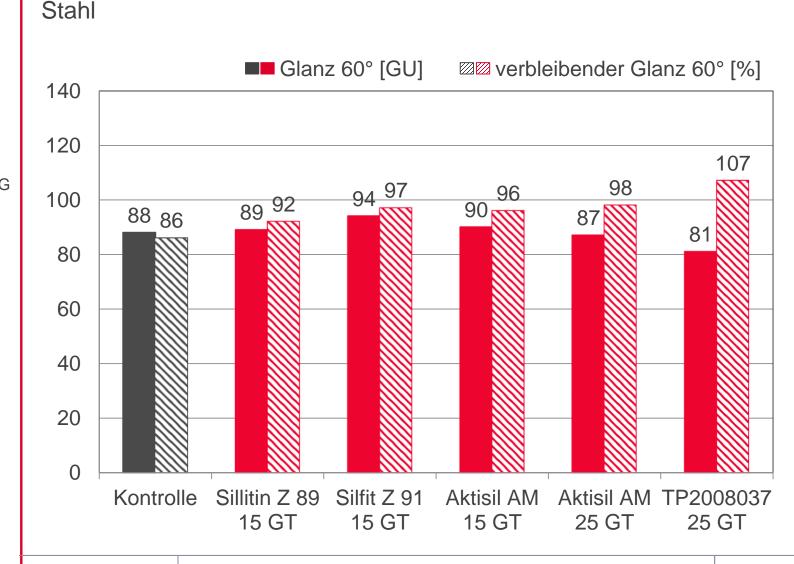
ERGEBNISSE

ZUSAMMENFASSUNG

<u>ANHANG</u>

Kondenswassertest 240 h Glanz 60°

EINLEITUNG


EXPERIMENTELLES

ERGEBNISSE

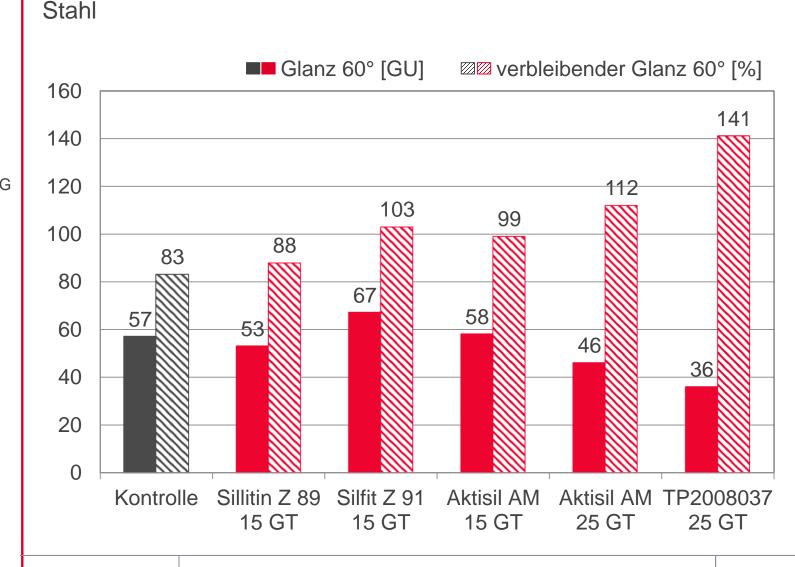
ZUSAMMENFASSUNG

<u>ANHANG</u>

VM-0/0416/04.2016

Kondenswassertest 240 h Glanz 20°

EINLEITUNG


EXPERIMENTELLES

ERGEBNISSE

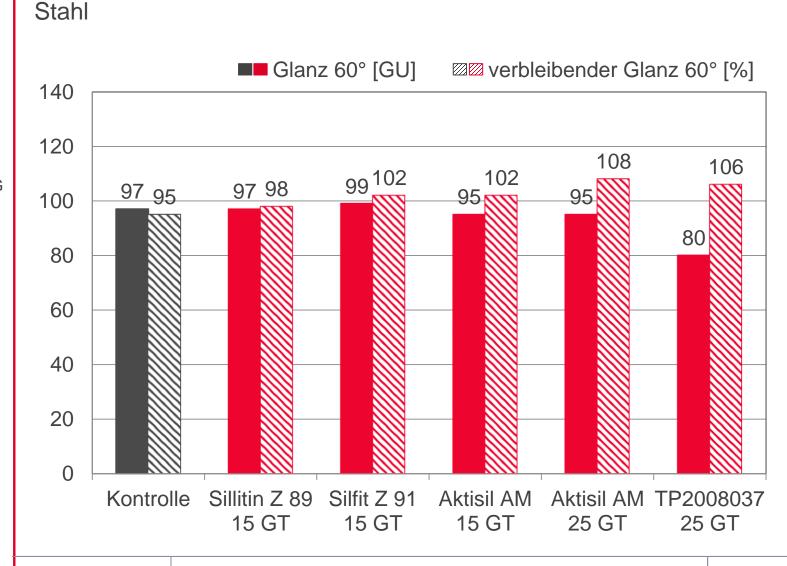
ZUSAMMENFASSUNG

ANHANG

Salzsprühtest 240 h Glanz 60°

37

EINLEITUNG


EXPERIMENTELLES

ERGEBNISSE

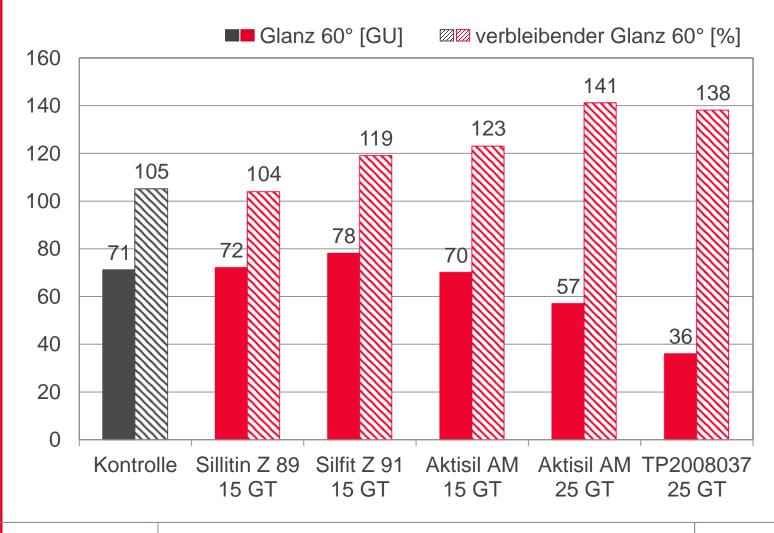
ZUSAMMENFASSUNG

ANHANG

Salzsprühtest 240 h Glanz 20°

Stahl

EXPERIMENTELLES


ERGEBNISSE

EINLEITUNG

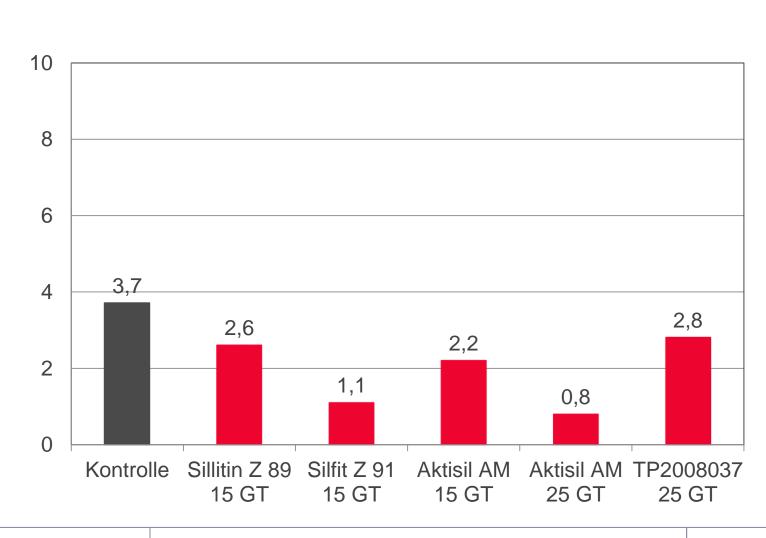
ZUSAMMENFASSUNG

<u>ANHANG</u>

VM-0/0416/04.2016

Salzsprühtest 240 h Farbänderung Delta E

EINLEITUNG


EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

<u>ANHANG</u>

Stahl