

Neuburger Kieselerde in Festsilikonkautschuk

Einleitung

EINLEITUNG

INHALT
EXPERIMENTELLES
VORVERSUCHE
HAUPTVERSUCHE
• VERNETZER E
ZUSAMMENFASSUNG
ERGEBNISTABELLEN

- VFRNFT7FR F
- VERNETZER C6
- DICUMYLPEROXID

Festsilikonkautschuk verfügt über eine sehr gute Mechanik, die selbst in einem großen Temperaturbereich erhalten bleibt.

Daher eignen sie sich zur Anwendung in nahezu allen Industrien.

Durch Einmischen inaktiver Füllstoffe, wie z. B. Quarzmehl oder Diatomeenerde, ist es möglich, die Verarbeitbarkeit des Compounds zu verbessern, wobei die Mechanik größtenteils erhalten bleibt, in einigen Fällen sogar verbessert werden kann.

Ziel dieser Untersuchung war es, den Einfluss und die Einsatzmöglichkeiten der Neuburger Kieselerde in Festsilikonkautschuk aufzuzeigen.

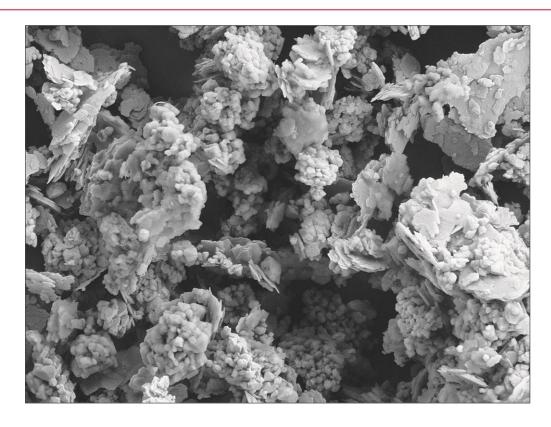
Struktur der Neuburger Kieselerde

EINLEITUNG

INHALT

EXPERIMENTELLES

VORVERSUCHE


HAUPTVERSUCHE

• VERNETZER E

ZUSAMMENFASSUNG

ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

Natürlich entstandenes Gemisch aus korpuskularer Neuburger Kieselsäure und lamellarem Kaolinit; durch physikalische Methoden nicht zu trennen. Der Kieselsäureanteil weist eine runde Kornform auf und besteht aus ca. 200 nm großen, aggregierten Primärpartikeln.

VM-2/0409/05.2010

Inhalt

EINLEITUNG

INHALT

EXPERIMENTELLES

VORVERSUCHE

HAUPTVERSUCHE

VERNETZER E

ZUSAMMENFASSUNG

ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

Experimentelles

- Rezeptur
- Verwendete Füllstoffe und ihre Kennwerte
- Prüfungen

Vorversuche

Hauptversuche

Vernetzer E (Bis-(2,4-dichlorbenzoyl)-peroxid)

Zusammenfassung

Ergebnistabellen

- Vernetzer E (Bis-(2,4-dichlorbenzoyl)-peroxid)
- Vernetzer C6 (2,5-Bis-(t-butylperoxy)-2,5-di-methylhexan)
- Dicumylperoxid

Rezeptur, Dosierung in phr

EINLEITUNG INHALT

EXPERIMENTELLES

VORVERSUCHE HAUPTVERSUCHE

• VERNETZER E

ZUSAMMENFASSUNG

ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

Elastosil R401/40	Polymer	100	100	100
	Füllstoff	25 - 100	25 - 100	25 - 100
Bis-(2,4-dichlorbenzoyl)- peroxid (50 %ig) Elastosil AUX Vernetzer E	Vernetzer	1,5	-	-
2,5-Bis-(t-butylperoxy)-2,5-di- methylhexan (45 %ig) Elastosil AUX Vernetzer C6	Vernetzer	-	1,2	-
Dicumylperoxid (40 %ig) Perkadox BC-40S-ps	Vernetzer	-	-	0,99

VM-2/0409/05.2010

Füllstoffkennwerte

EINLEITUNG INHALT

EXPERIMENTELLES

VORVERSUCHE HAUPTVERSUCHE

• VERNETZER E

ZUSAMMENFASSUNG

ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

			KGV d ₅₀	KGV d ₉₇	Ölzahl	BET Oberfläche	Abrasivi- tätsindex (*)
			[µm]	[µm]	[g/100g]	[m²/g]	[-]
QM	Quarzmehl	keine	2,8	12,0	32	3,8	100
QM vs	Quarzmehl	Vinylsilan	3,4	12,7	32	3,2	k. A.
QM fk	Diatomeenerde Flusskalziniert	keine	11,9	32,7	116	1,5	100
Sillitin Z 86	NKE	keine	1,7	7,9	51	11,0	k. A.
Sillitin Z 89	NKE	keine	2,0	8,6	49	10,1	k. A.
Sillitin V 85	NKE	keine	3,7	15,6	45	8,0	k. A.
Sillitin V 88	NKE	keine	4,0	17,0	45	7,4	k. A.
Aktisil MAM	NKE	Methacryl	3,6	15,6	41	6,6	k. A.
Aktisil Q	NKE	Methacryl	4,2	17,0	42	6,5	50

(*) Bestimmung mit dem Einlehner-Test

Prüfungen

EINLEITUNG INHALT

EXPERIMENTELLES

HAUPTVERSUCHE

• VERNETZER E

VORVERSUCHE

ZUSAMMENFASSUNG

ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

	Norm
Mooneyviskosität	DIN 53 523, T4
Mooney-Scorch	DIN 53 523, T4
Vulkanisationsverhalten	DIN 53 529, T3
Zugversuch	DIN 53 504, S2
Weiterreißwiderstand	DIN ISO 34-1, A
Härte	DIN 53 505
Rückprallelastizität	DIN 53 512
Druckverformungsrest	DIN ISO 815, B

	Bedingungen
Tempern	4 h / 200 °C
Heißluftalterung	168 h / 200 °C
Lagerung in Referenzflüssigkeit IRM 903	72 h / 150 °C

Vulkanisationsbedingungen

EINLEITUNG INHALT

EXPERIMENTELLES

VORVERSUCHE HAUPTVERSUCHE

• VERNETZER E

ZUSAMMENFASSUNG

ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

Vernetzer E:

Vulkanisationstemperatur: 115°C

Vulkanisationsdauer: 5 Min.

Vernetzer C6:

Vulkanisationstemperatur: 165°C

Vulkanisationsdauer: 5 Min.

Dicumylperoxid:

Vulkanisationstemperatur: 180°C

Vulkanisationsdauer: 5 Min.

Vorversuche

EINLEITUNG

INHALT

EXPERIMENTELLES

VORVERSUCHE

HAUPTVERSUCHE

VERNETZER E

ZUSAMMENFASSUNG

ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

Es wurden jeweils 100 phr von folgenden Füllstoffen eingesetzt:

<u>Referenzfüllstoffe</u>

<u>Neuburger Kieselerde</u>

Quarzmehl (QM) Sillitin Z 86

Quarzmehl silanisiert (QM vs) Sillitin Z 89

Diatomeenerde flusskalz. (DE fk), Sillitin V 85

Dosierung 50 phr Sillitin V 88

Aktisil MAM

Aktisil Q

Definition

In den Vorversuchen, wie auch in der Dosierungsreihe wird die Mischung, der kein weiterer Füllstoff zugesetzt wurde, als "Base cpd." bezeichnet.

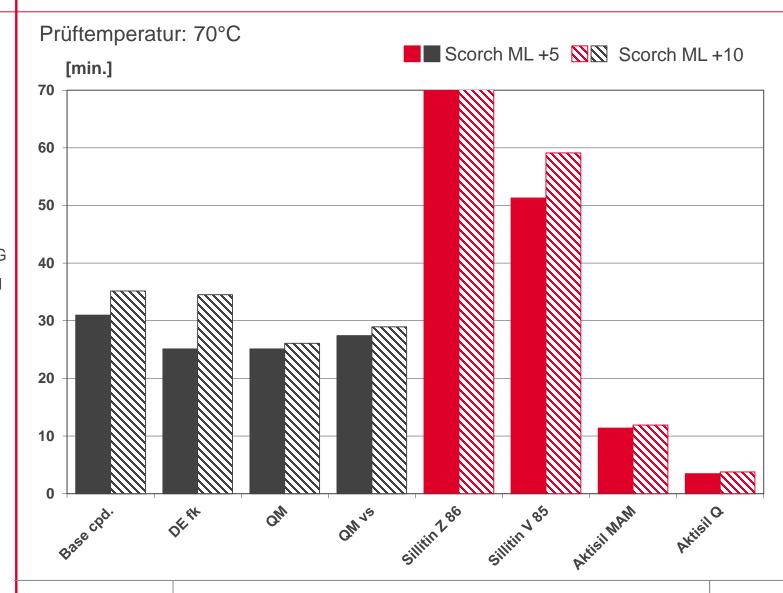
VM-2/0409/05.2010

Scorchverhalten mit Vernetzer E

EINLEITUNG INHALT

EXPERIMENTELLES

VORVERSUCHE


HAUPTVERSUCHE

• VERNETZER E

ZUSAMMENFASSUNG

ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

VM-2/0409/05.2010

Vernetzungsverhalten mit Vernetzer E (115 °C)

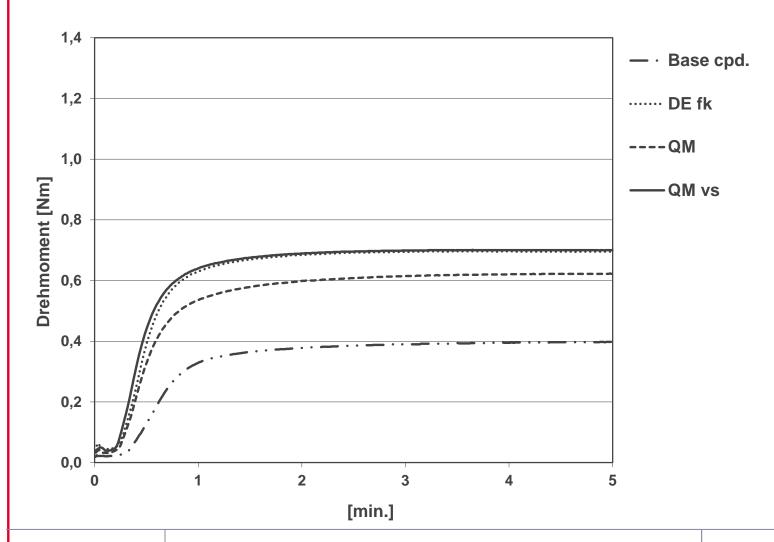
EINLEITUNG

INHALT

EXPERIMENTELLES

VORVERSUCHE

HAUPTVERSUCHE


• VERNETZER E

ZUSAMMENFASSUNG

ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

Referenzfüllstoffe

Vernetzungsverhalten mit Vernetzer E (115 °C)

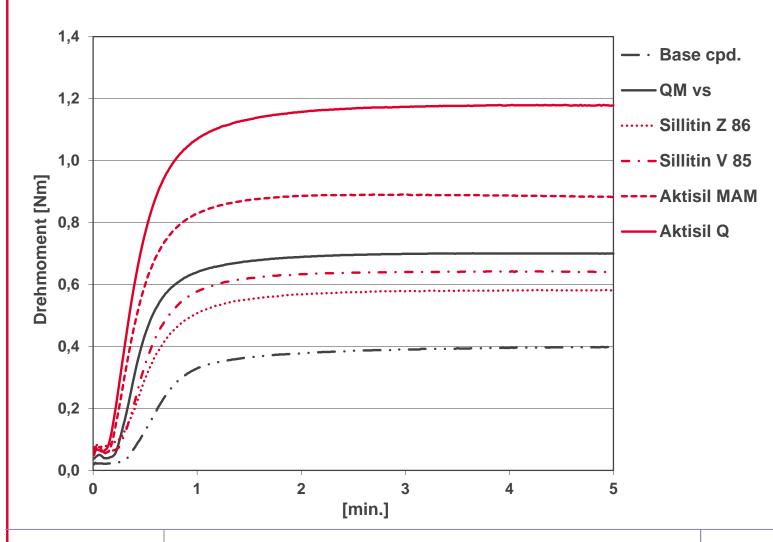
EINLEITUNG

INHALT

EXPERIMENTELLES

VORVERSUCHE

HAUPTVERSUCHE


• VERNETZER E

ZUSAMMENFASSUNG

ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

Neuburger Kieselerde und silanisiertes Quarzmehl zum Vergleich

Vernetzungsverhalten mit Vernetzer C6 (165 °C)

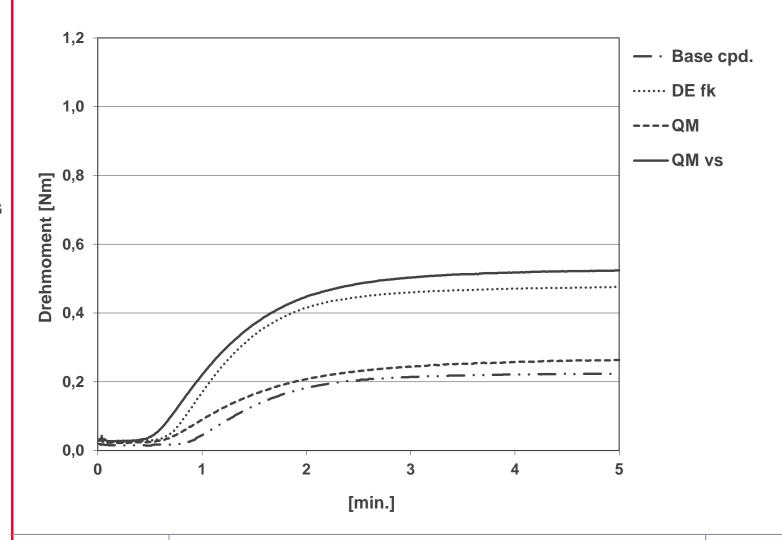
EINLEITUNG

INHALT

EXPERIMENTELLES

VORVERSUCHE

HAUPTVERSUCHE


VERNETZER E

ZUSAMMENFASSUNG

ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

Referenzfüllstoffe

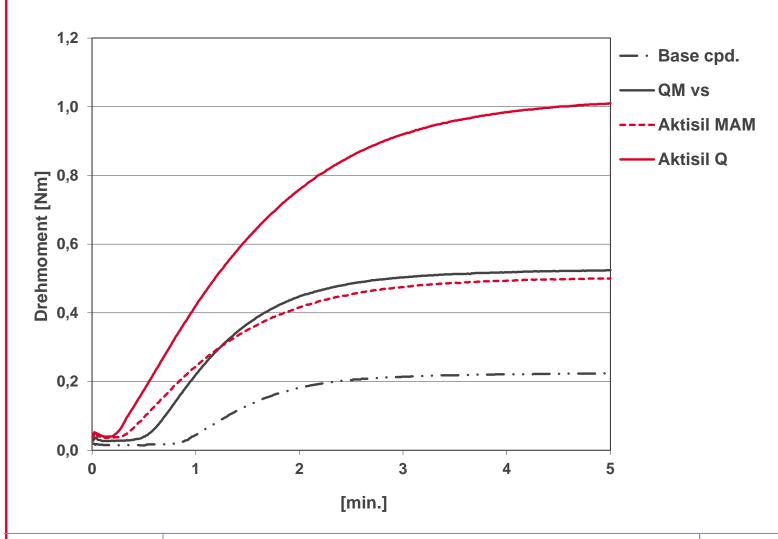
Vernetzungsverhalten mit Vernetzer C6 (165 °C)

EINLEITUNG INHALT

EXPERIMENTELLES

VORVERSUCHE

HAUPTVERSUCHE


• VERNETZER E

ZUSAMMENFASSUNG

ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

Neuburger Kieselerde und silanisiertes Quarzmehl zum Vergleich

VM-2/0409/05.2010

Vernetzungsverhalten mit Dicumylperoxid (180 °C)

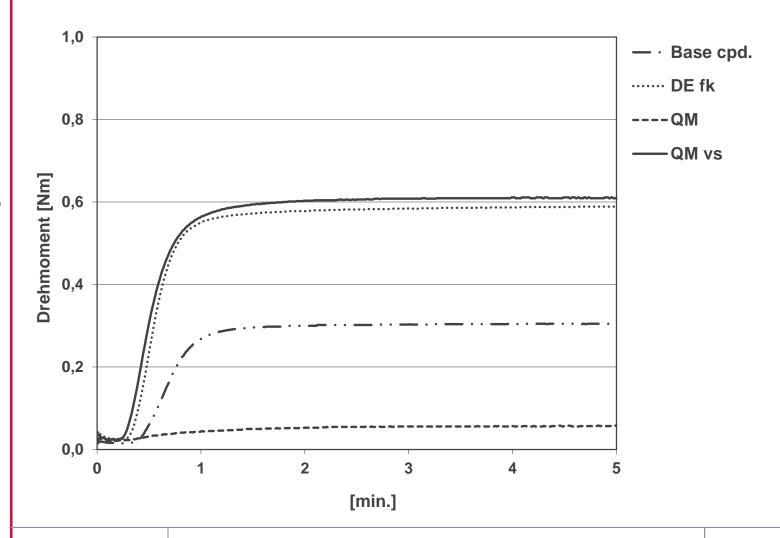
EINLEITUNG

INHALT

EXPERIMENTELLES

VORVERSUCHE

HAUPTVERSUCHE


• VERNETZER E

ZUSAMMENFASSUNG

ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

Referenzfüllstoffe

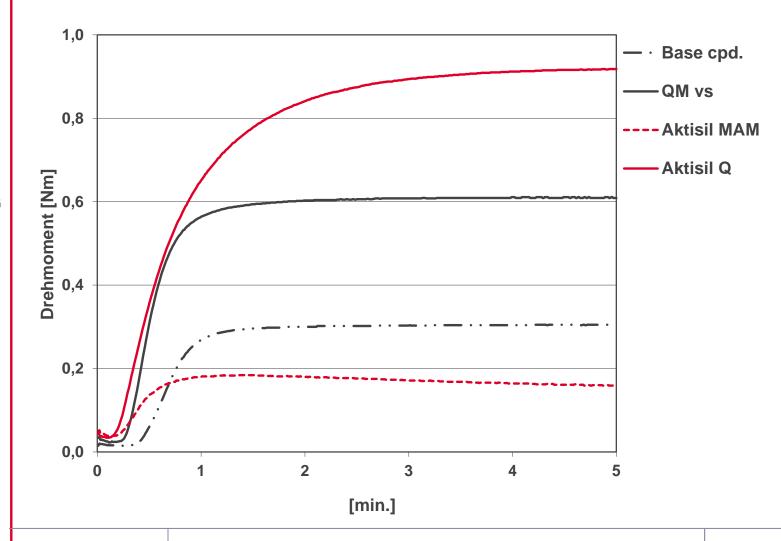
Vernetzungsverhalten mit Dicumylperoxid (180 °C)

EINLEITUNG INHALT

EXPERIMENTELLES

VORVERSUCHE

HAUPTVERSUCHE


• VERNETZER E

ZUSAMMENFASSUNG

ERGEBNISTABELLEN

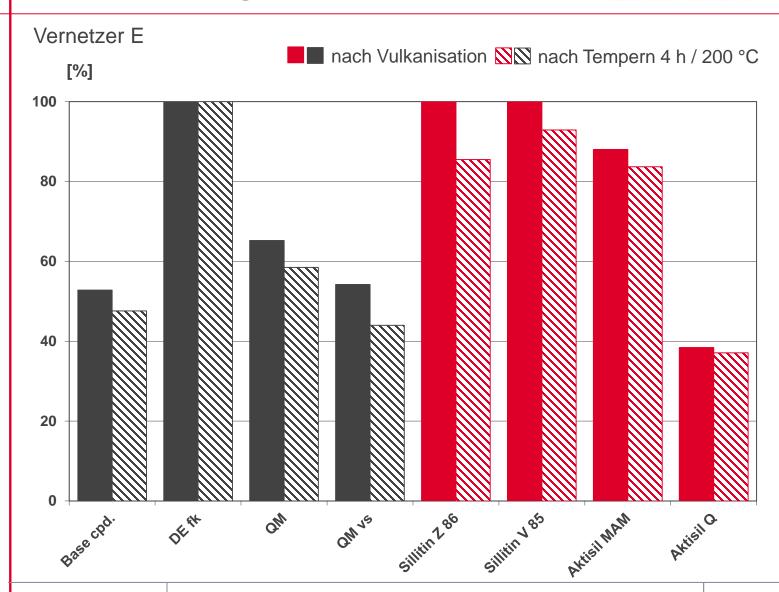
- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

Neuburger Kieselerde und silanisiertes Quarzmehl zum Vergleich

EINLEITUNG INHALT

EXPERIMENTELLES

VORVERSUCHE


HAUPTVERSUCHE

• VERNETZER E

ZUSAMMENFASSUNG

ERGEBNISTABELLEN

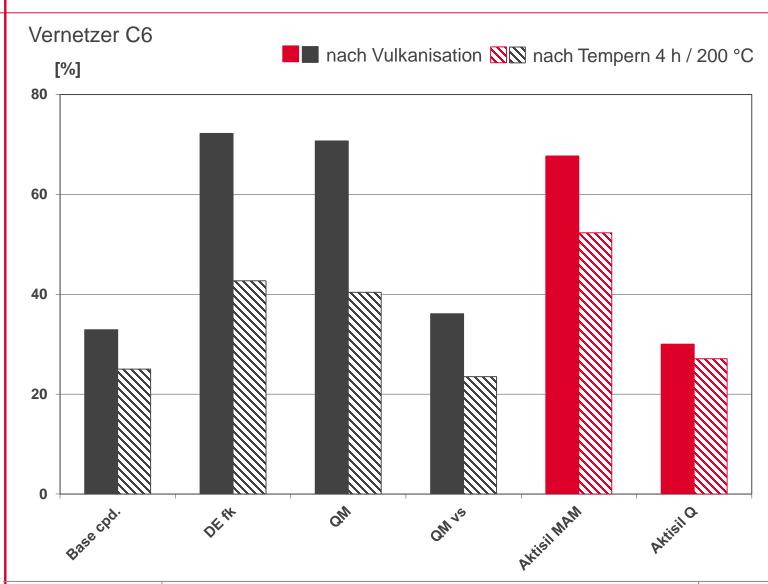
- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

VM-2/0409/05.2010

EINLEITUNG INHALT

EXPERIMENTELLES

VORVERSUCHE


HAUPTVERSUCHE

• VERNETZER E

ZUSAMMENFASSUNG

ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

VM-2/0409/05.2010

EINLEITUNG INHALT

EXPERIMENTELLES

VORVERSUCHE


HAUPTVERSUCHE

• VERNETZER E

ZUSAMMENFASSUNG

ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

Erkenntnisse aus den Vorversuchen

EINLEITUNG INHALT EXPERIMENTELLES VORVERSUCHE

HAUPTVERSUCHE

- VERNETZER EZUSAMMENFASSUNGERGEBNISTABELLEN
- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

Vernetzung mit Vernetzer E

- → Unbehandelte Neuburger Kieselerde (und auch vinyl-funktionalisiert) erzielt schwache Werte in der Mechanik:
 - Schlechter Druckverformungsrest (teils bei 100 %)
 - Schlechte Zugeigenschaften
 - Schlechtes Temperungs- und Heißluftalterungsverhalten
- → Mit unbehandeltem Quarzmehl schlechter Druckverformungsrest bei moderaten mechanischen Eigenschaften.
- → Mit Diatomeenerde sehr schlechter Druckverformungsrest bei moderaten mechanischen Eigenschaften.

Erkenntnisse aus den Vorversuchen

EINLEITUNG INHALT EXPERIMENTELLES VORVERSUCHE

HAUPTVERSUCHE

- VERNETZER EZUSAMMENFASSUNGERGEBNISTABELLEN
- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

Vernetzung mit Vernetzer C6 und Dicumylperoxid

- → Unbehandelte Neuburger Kieselerde (und auch vinyl-funktionalisiert) inhibiert die Vernetzung.
- → Mit unbehandeltem Quarzmehl schlechte mechanische Eigenschaften (Vernetzer C6), bzw. inhibierte Vernetzung (Dicumylperoxid).
- → Mit Diatomeenerde moderater (Vernetzer C6), bzw. schlechter (Dicumylperoxid) Druckverformungsrest bei moderaten mechanischen Eigenschaften.

Erkenntnisse aus den Vorversuchen

EINLEITUNG
INHALT
EXPERIMENTELLES
VORVERSUCHE

HAUPTVERSUCHE

- VERNETZER EZUSAMMENFASSUNG
- ERGEBNISTABELLEN
- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

Es können sehr gute mechanische Werte mit einem oberflächenbehandeltem Quarzmehl erreicht werden.

Aktisil Q erreicht knapp das Niveau des oberflächenbehandelten Quarzmehls bezüglich der Zugeigenschaften und zeigt:

- → höhere Vulkanisationsausbeute
- → Erhöhung des Härteniveaus
- → Verbesserung des Druckverformungsrests

Schlussfolgerung

EINLEITUNG
INHALT
EXPERIMENTELLES

VORVERSUCHE

HAUPTVERSUCHE

- VERNETZER E
- ZUSAMMENFASSUNG
- **ERGEBNISTABELLEN**
- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

→ Eigenschaftsprofil Aktisil Q ähnelt dem des oberflächenbehandelten Quarzmehls.

→ Gegenüberstellung Aktisil Q und silanisiertes Quarzmehls in verschiedenen Dosierungen sinnvoll.

Im Folgenden werden die Ergebnisse der Dosierungsreihe dargestellt.

Vernetzer E

Rezeptur, Dosierung in phr

EINLEITUNG
INHALT
EXPERIMENTELLES
VORVERSUCHE

HAUPTVERSUCHE

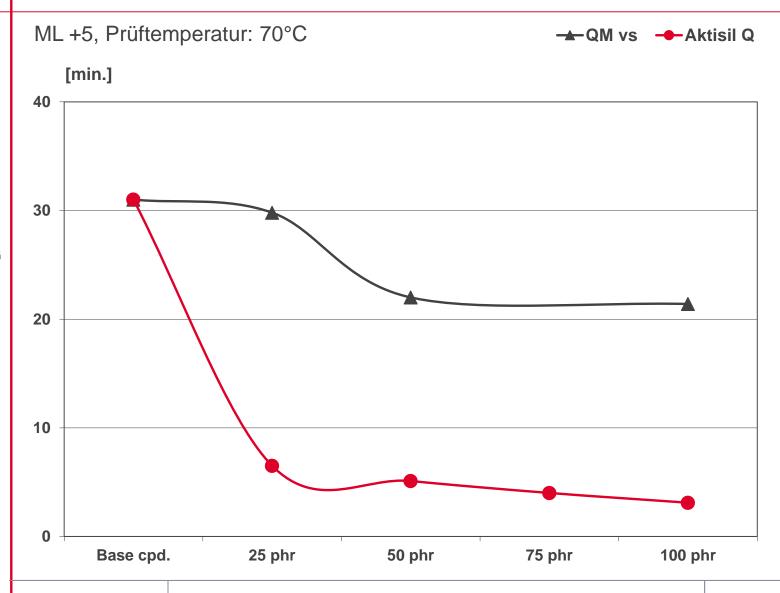
• VERNETZER E

ZUSAMMENFASSUNG ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

Elastosil R 401/40	100	100	100	100	100	100	100	100
Elastosil AUX Vernezter E	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
QM vs		25	50	100				
Aktisil Q					25	50	75	100

Scorchverhalten


EINLEITUNG
INHALT
EXPERIMENTELLES
VORVERSUCHE

HAUPTVERSUCHE

• VERNETZER E

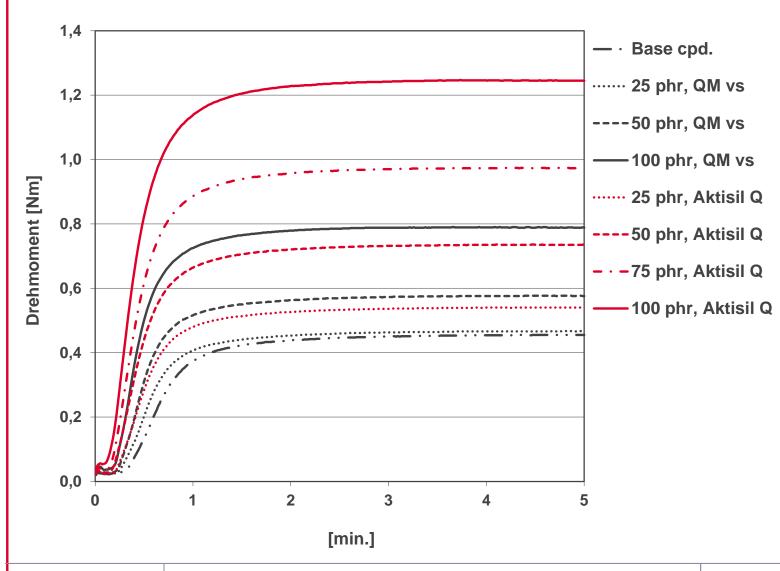
ZUSAMMENFASSUNG ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

VM-2/0409/05.2010

Vernetzungsverhalten (115 °C)

EINLEITUNG
INHALT
EXPERIMENTELLES
VORVERSUCHE


HAUPTVERSUCHE

• VERNETZER E

ZUSAMMENFASSUNG

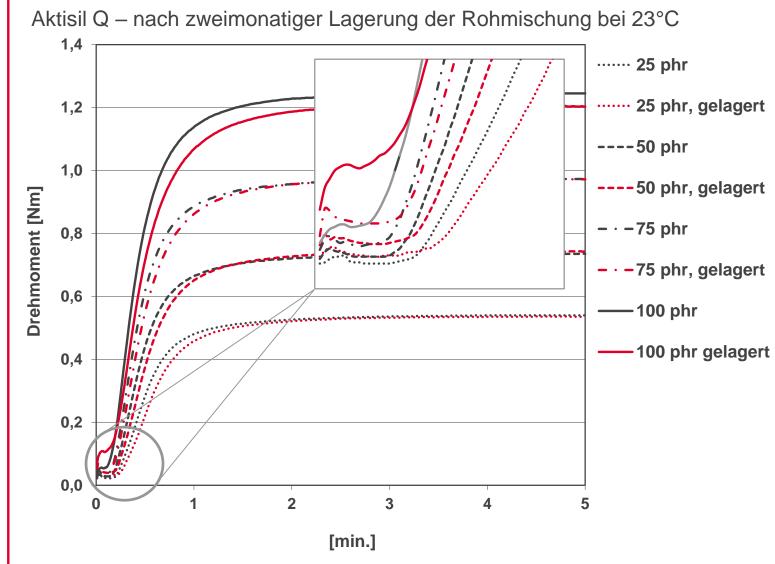
ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

VM-2/0409/05.2010

Veränderung des Vernetzungsverhaltens durch Lagerung bei Raumtemperatur

EINLEITUNG
INHALT
EXPERIMENTELLES
VORVERSUCHE


HAUPTVERSUCHE

• VERNETZER E

ZUSAMMENFASSUNG

ERGEBNISTABELLEN

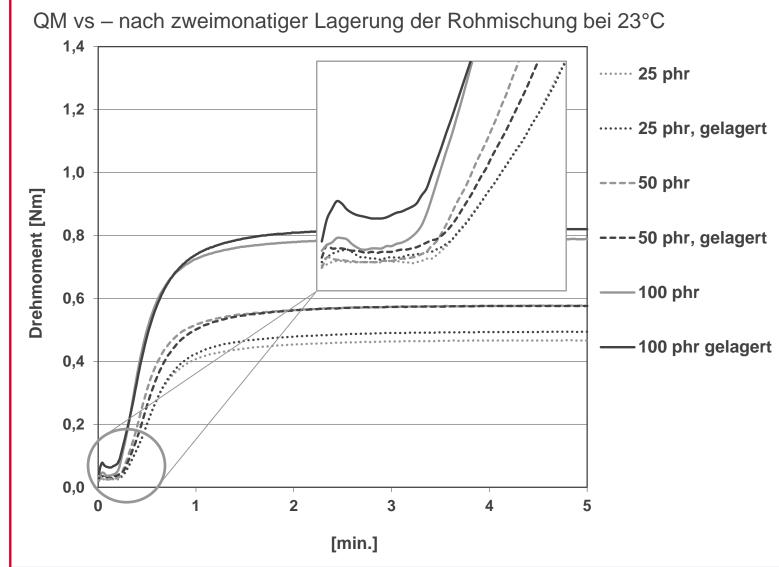
- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

VM-2/0409/05.2010

Veränderung des Vernetzungsverhaltens durch Lagerung bei Raumtemperatur

EINLEITUNG
INHALT
EXPERIMENTELLES

HAUPTVERSUCHE


• VERNETZER E

VORVERSUCHE

ZUSAMMENFASSUNG

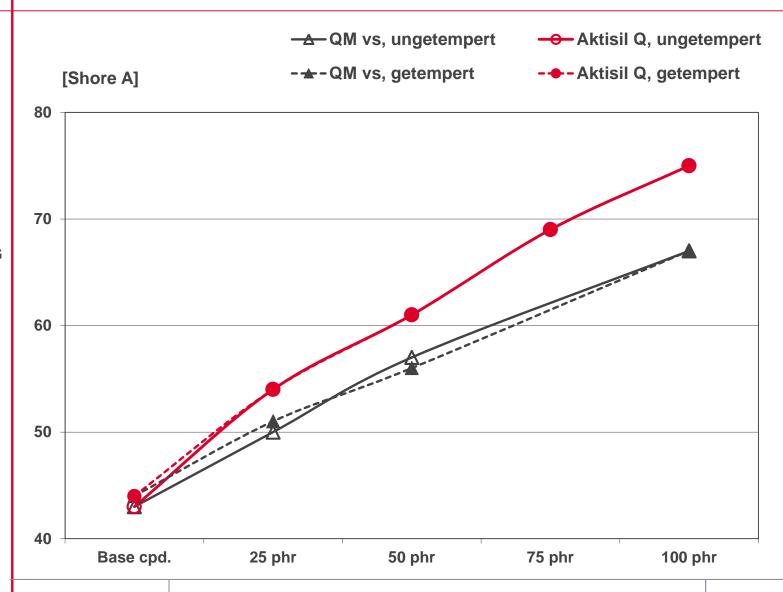
ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

VM-2/0409/05.2010

Härte

EINLEITUNG
INHALT
EXPERIMENTELLES
VORVERSUCHE


HAUPTVERSUCHE

• VERNETZER E

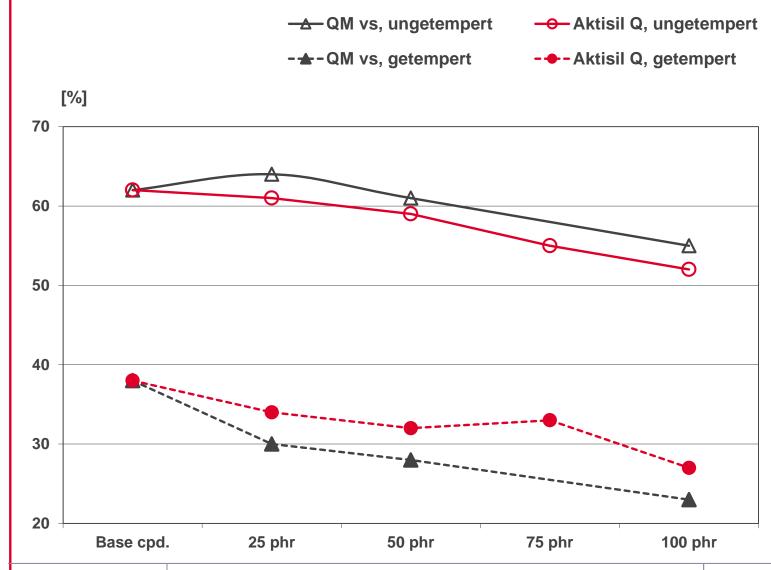
ZUSAMMENFASSUNG

ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

Rückprallelastizität

EINLEITUNG
INHALT
EXPERIMENTELLES
VORVERSUCHE


HAUPTVERSUCHE

• VERNETZER E

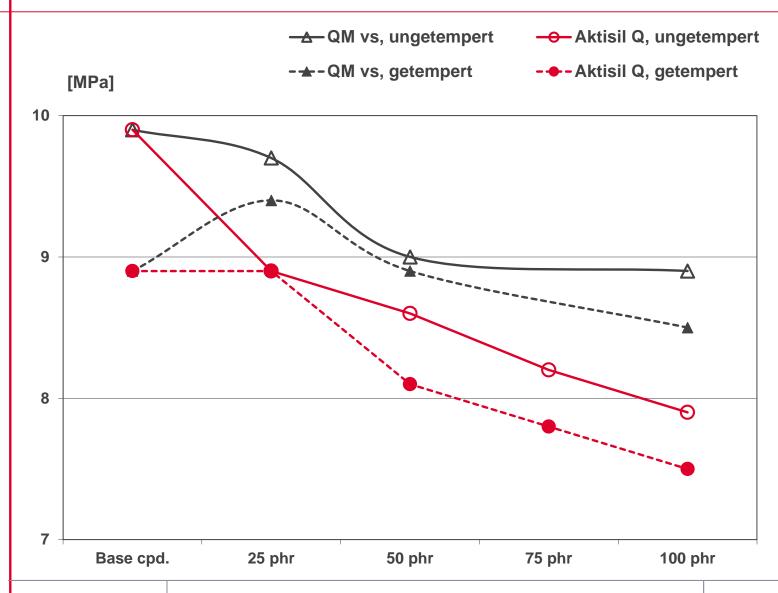
ZUSAMMENFASSUNG

ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

Zugfestigkeit

EINLEITUNG
INHALT
EXPERIMENTELLES
VORVERSUCHE


HAUPTVERSUCHE

• VERNETZER E

ZUSAMMENFASSUNG

ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

VM-2/0409/05.2010

Spannungswert bei 100 % Dehnung

EINLEITUNG
INHALT
EXPERIMENTELLES
VORVERSUCHE


HAUPTVERSUCHE

• VERNETZER E

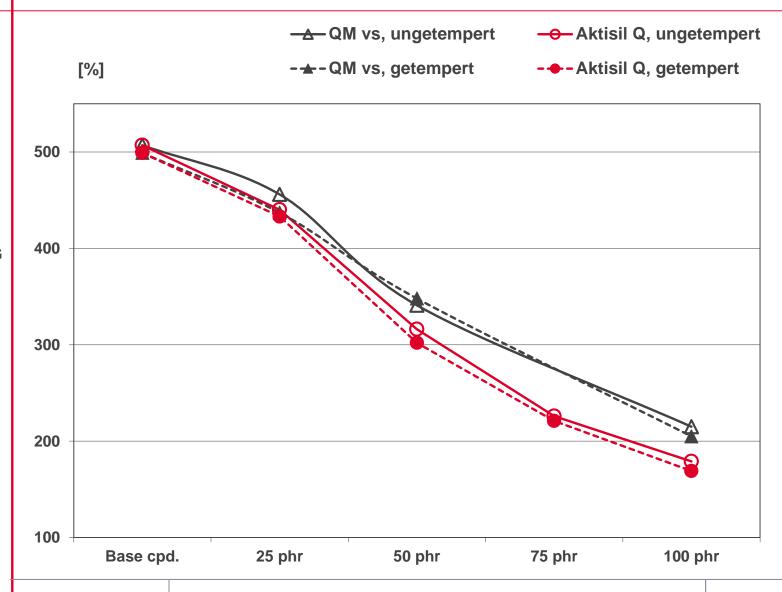
ZUSAMMENFASSUNG

ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

VM-2/0409/05.2010

Reißdehnung


EINLEITUNG
INHALT
EXPERIMENTELLES
VORVERSUCHE

HAUPTVERSUCHE

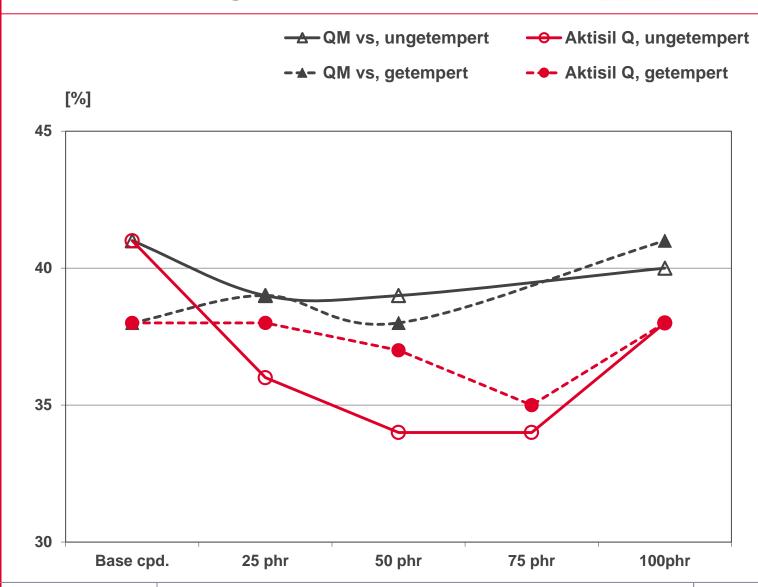
• VERNETZER E

ZUSAMMENFASSUNG ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

VM-2/0409/05.2010

EINLEITUNG
INHALT
EXPERIMENTELLES
VORVERSUCHE


HAUPTVERSUCHE

• VERNETZER E

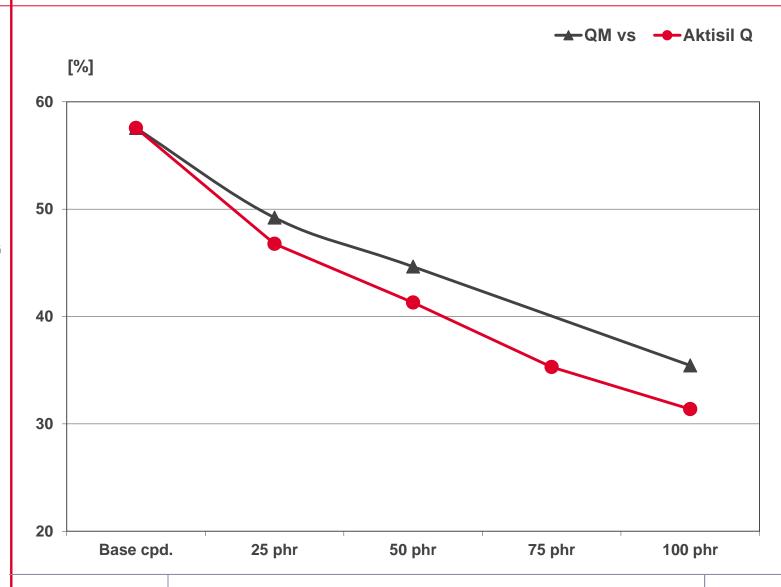
ZUSAMMENFASSUNG

ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

Volumenzunahme nach Lagerung in Referenzflüssigkeit IRM 903, 72 h / 150°C

EINLEITUNG
INHALT
EXPERIMENTELLES
VORVERSUCHE


HAUPTVERSUCHE

• VERNETZER E

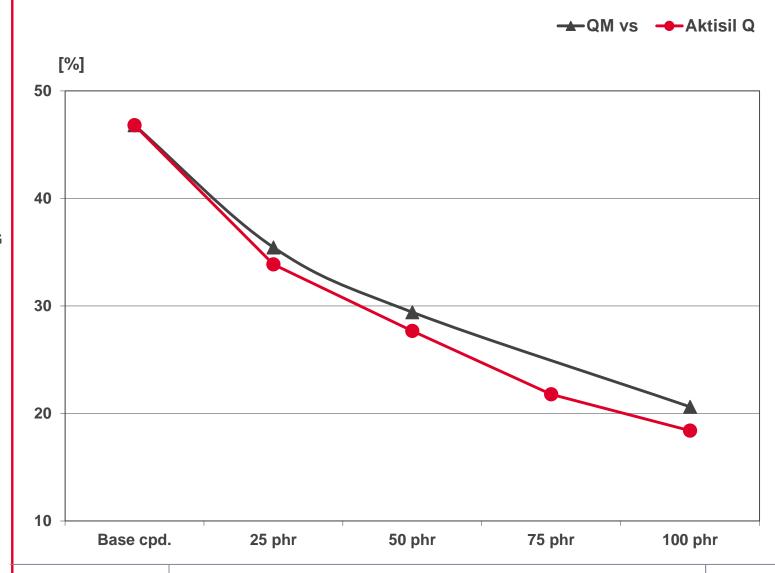
ZUSAMMENFASSUNG

ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

Gewichtszunahme nach Lagerung in Referenzflüssigkeit IRM 903, 72 h / 150°C

EINLEITUNG
INHALT
EXPERIMENTELLES
VORVERSUCHE


<u>HAUPTVERSUCHE</u>

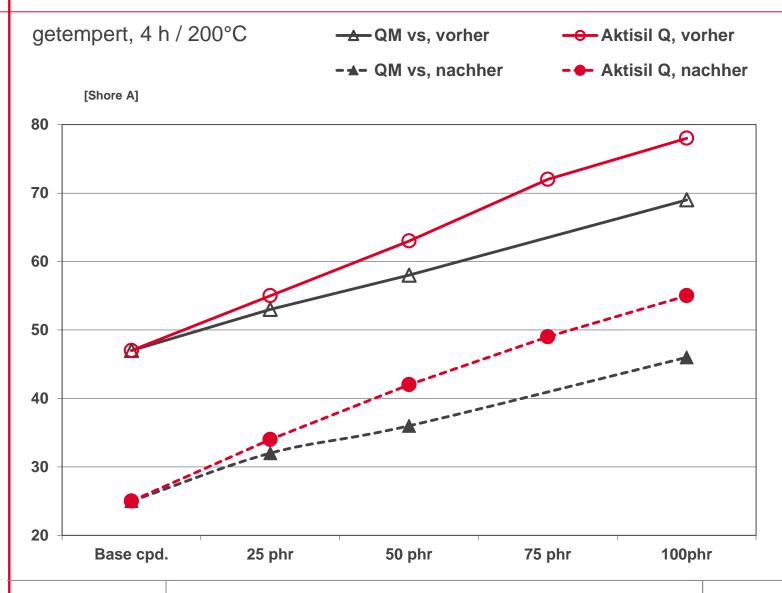
• VERNETZER E

ZUSAMMENFASSUNG

ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

Härte vor und nach Lagerung in Referenzflüssigkeit IRM 903, 72 h / 150°C


EINLEITUNG
INHALT
EXPERIMENTELLES
VORVERSUCHE

HAUPTVERSUCHE

VERNETZER E

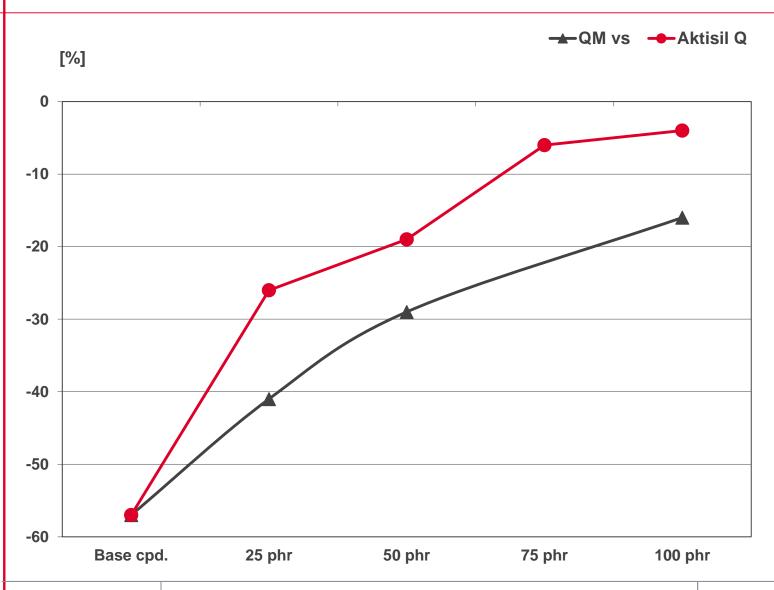
ZUSAMMENFASSUNG ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

VM-2/0409/05.2010

Zugfestigkeitsänderung nach Lagerung in Referenzflüssigkeit IRM 903, 72 h / 150°C

EINLEITUNG
INHALT
EXPERIMENTELLES
VORVERSUCHE


HAUPTVERSUCHE

• VERNETZER E

ZUSAMMENFASSUNG

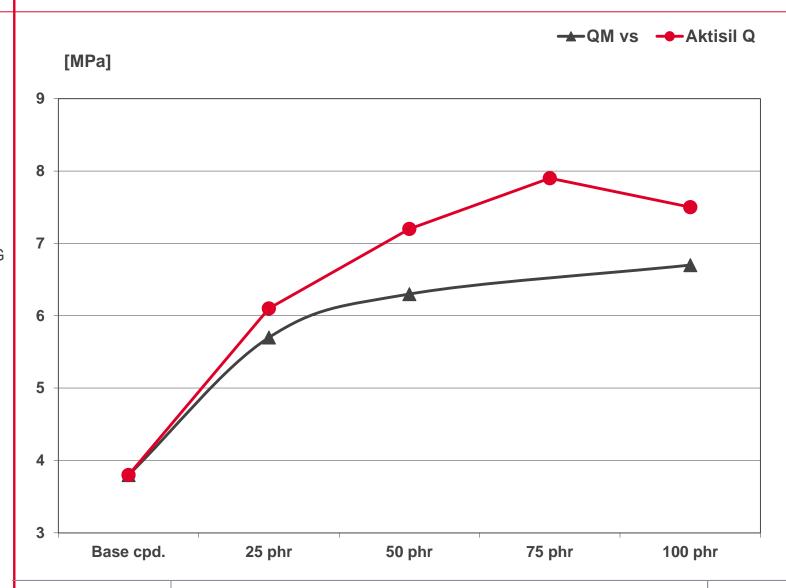
ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

VM-2/0409/05.2010

38

Zugfestigkeit nach Lagerung in Referenzflüssigkeit IRM 903, 72 h / 150°C


EINLEITUNG
INHALT
EXPERIMENTELLES
VORVERSUCHE

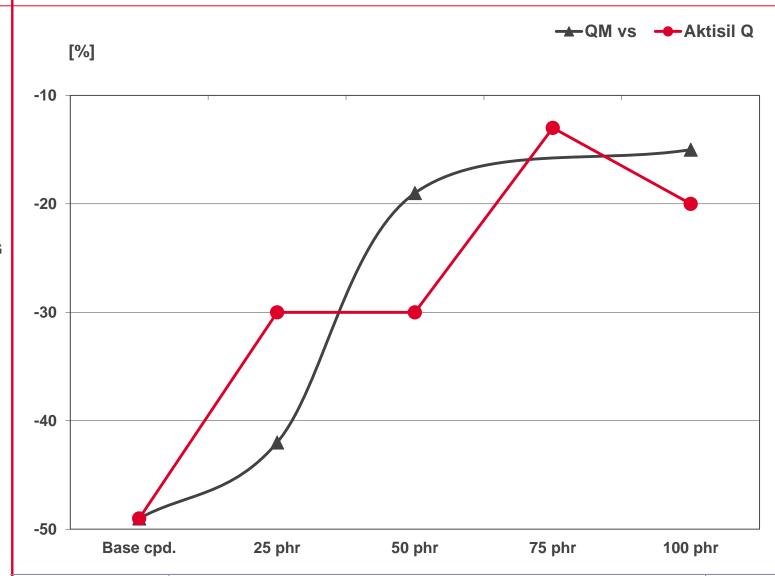
HAUPTVERSUCHE

• VERNETZER E

ZUSAMMENFASSUNG ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

Reißdehnungsänderung nach Lagerung in Referenzflüssigkeit IRM 903, 72 h / 150°C


EINLEITUNG
INHALT
EXPERIMENTELLES
VORVERSUCHE

HAUPTVERSUCHE

• VERNETZER E

ZUSAMMENFASSUNG

- ERGEBNISTABELLEN
- VERNETZER EVERNETZER C6
- DICUMYLPEROXID

VM-2/0409/05.2010

Extrusion

41

EINLEITUNG
INHALT
EXPERIMENTELLES
VORVERSUCHE

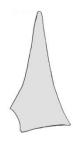
HAUPTVERSUCHE

• VERNETZER E

ZUSAMMENFASSUNG

ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID


Dosierung der in den Vorversuchen eingesetzten Füllstoffe: 100 phr (Diatomeenerde: 50 phr)

Extruderdaten:

- Schwabenthan-Extruder polytest 30R,
- Schneckendurchmesser 30 mm,
- Schneckenlänge 15D

Extrusionsbedingungen:

- 25°C in allen Zonen
- Garveyprofil

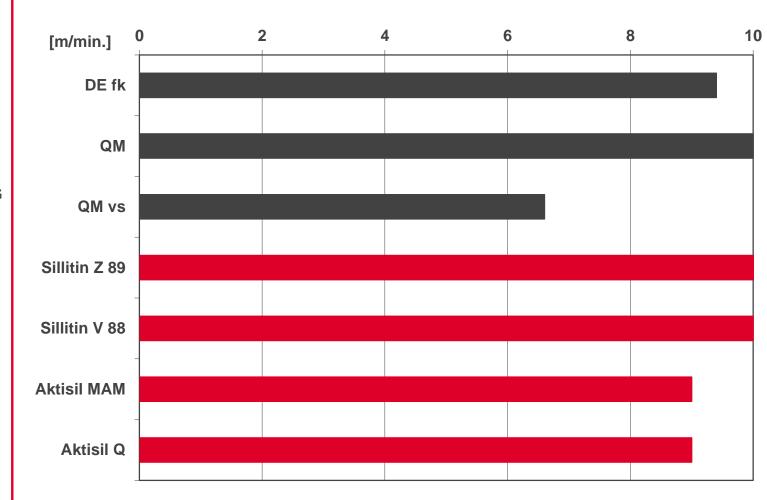
Schlauchprofil

Extrusion nach Garvey

Ausstoß

Drehzahl: 100 U/min.

EINLEITUNG
INHALT
EXPERIMENTELLES
VORVERSUCHE


HAUPTVERSUCHE

• VERNETZER E

ZUSAMMENFASSUNG

ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

VM-2/0409/05.2010

42

Extrusion nach Garvey Beurteilung (unvulkanisierte Extrudate)

EINLEITUNG
INHALT
EXPERIMENTELLES
VORVERSUCHE


HAUPTVERSUCHE

VERNETZER E

ZUSAMMENFASSUNG

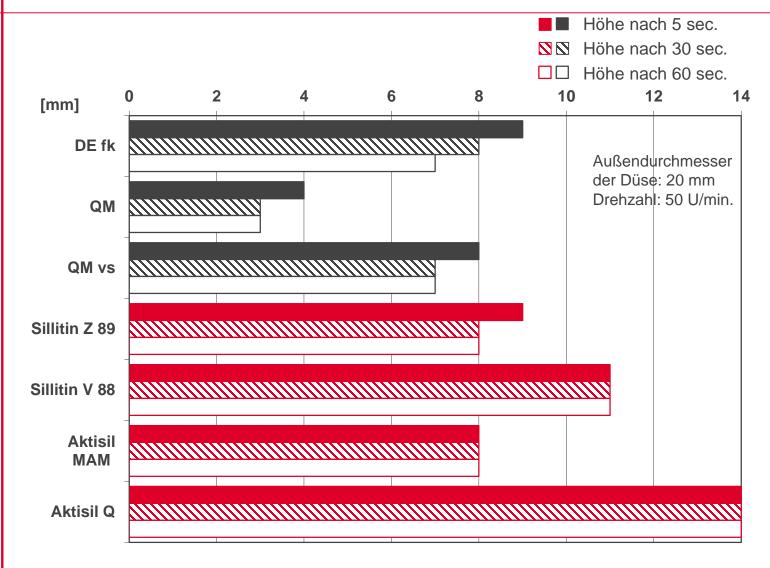
ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

VM-2/0409/05.2010

Extrusion des Schlauchprofils (unvulkanisierte Extrudate)

EINLEITUNG
INHALT
EXPERIMENTELLES
VORVERSUCHE


HAUPTVERSUCHE

VERNETZER E

ZUSAMMENFASSUNG

ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

Extrusion des Schlauchprofils

EINLEITUNG
INHALT
EXPERIMENTELLES
VORVERSUCHE

HAUPTVERSUCHE

• VERNETZER E

ZUSAMMENFASSUNG ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

Tendenz zum Kleben der unvulkanisierten Extrudate

EINLEITUNG
INHALT
EXPERIMENTELLES
VORVERSUCHE

<u>HAUPTVERSUCHE</u>

• <u>VERNETZER E</u>

ZUSAMMENFASSUNG

ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

	Klebrigkeit
Diatomeenerde, flusskalziniert	keine
Quarzmehl	Ja
Quarzmehl, vinylsilanbehandelt	Ja
Sillitin Z 89	keine
Sillitin V 88	keine
Aktisil MAM	keine
Aktisil Q	keine

Farbe der Vulkanisate

EINLEITUNG
INHALT
EXPERIMENTELLES
VORVERSUCHE

HAUPTVERSUCHE

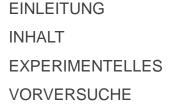
• VERNETZER E

ZUSAMMENFASSUNG

ERGEBNISTABELLEN

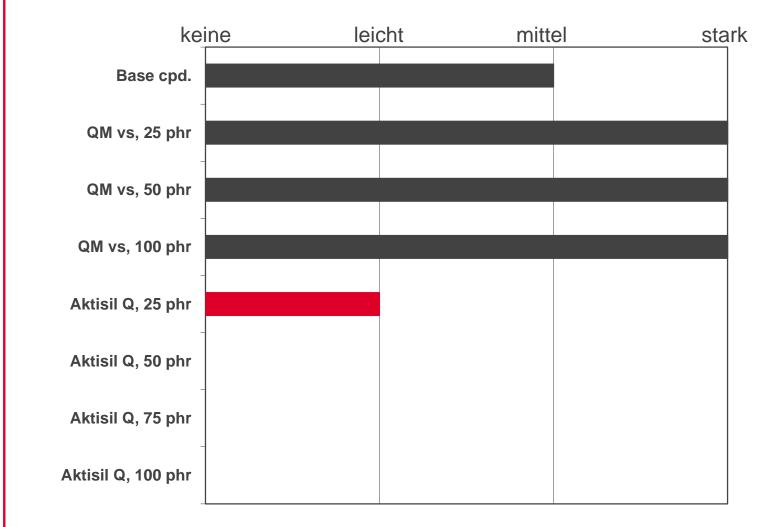
- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

	①	2
	QM vs	Aktisil Q
L*	78,7	79,7
a*	0,9	0,6
b*	6,3	11,6


Dosierung des Füllstoffs: 25 phr

Ausblühungen des Vernetzer E

Tendenz zum Ausblühen

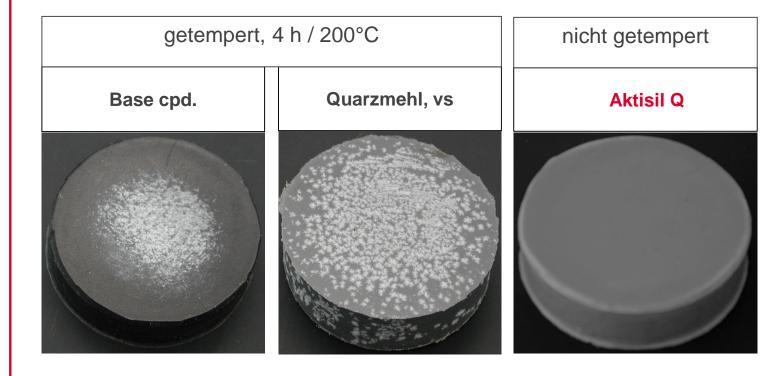

HAUPTVERSUCHE

• VERNETZER E

ZUSAMMENFASSUNG

ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID


Ausblühungen des Vernetzer E

EINLEITUNG
INHALT
EXPERIMENTELLES
VORVERSUCHE

HAUPTVERSUCHE

- VERNETZER E
- ZUSAMMENFASSUNG
- **ERGEBNISTABELLEN**
- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

Zusammenfassung Allgemeine Eigenschaften von Aktisil Q

EINLEITUNG
INHALT
EXPERIMENTELLES
VORVERSUCHE
HAUPTVERSUCHE
• VERNETZER E

<u>ZUSAMMENFASSUNG</u>

ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

- → Verkürzung der Mooneyscorchzeit mit Aktisil Q.
- → Erhöhung der Vulkanisationsausbeute durch Einsatz von Aktisil Q.
- → Erhöhung des Härteniveaus mit Aktisil Q.
- → Verringerung des Druckverformungsrestes mit Aktisil Q.
- → Reduzierung und Vermeidung (über 25 phr) der Ausblühungen des Vernetzers E.

Zusammenfassung Gegenüberstellung Aktisil Q – Base cpd.

EINLEITUNG
INHALT
EXPERIMENTELLES
VORVERSUCHE
HAUPTVERSUCHE

ZUSAMMENFASSUNG

ERGEBNISTABELLEN

• VERNETZER E

VERNETZER E

- VERNETZER C6
- DICUMYLPEROXID

- → Zugfestigkeit nimmt leicht ab, Reißdehnung nimmt merklich ab mit Aktisil Q, Spannungswerte erhöhen sich (Ausprägung abhängig von Dosierung).
- → Durch Einsatz von Aktisil Q kein Tempern notwendig (Tempern hat hier einen leicht negativen bis keinen Einfluss auf die Eigenschaften).
- → Mit Aktisil Q Verbesserung des Alterungsverhaltens in Referenzflüssigkeit IRM 903 .
- → Verbesserung des Druckverformungsrestes mit Aktisil Q.
 - Bis zu einer Dosierung von 75 phr erzielt das Aktisil Q ungetempert bessere Werte als die ungetemperte sowie getemperte Mischung ohne zusätzlichen Füllstoff.
- → Keine Ausblühungen des Vernetzers E.

Zusammenfassung **HCFFMANN**Gegenüberstellung Aktisil Q – Quarzmehl, vs MINERAL

EINLEITUNG
INHALT
EXPERIMENTELLES
VORVERSUCHE
HAUPTVERSUCHE
• VERNETZER E

<u>ZUSAMMENFASSUNG</u>

ERGEBNISTABELLEN

- VERNETZER E
- VERNETZER C6
- DICUMYLPEROXID

- → Geringe Abrasivität mit Aktisil Q.
- → Mit Aktisil Q leicht erhöhter Gelbstich.
- → Die Zugeigenschaften des Quarzmehls werden mit Aktisil Q erreicht.
- → Erhöhung des Härteniveaus mit Aktisil Q.
 - Härtegleichheit bei 75 phr vom Aktisil Q und 100 phr vom oberflächenbehandelten Quarzmehl.
- → Vergleichbares Alterungsverhalten in Heißluft.
- → Mit Aktisil Q Verbesserung des Alterungsverhaltens in Referenzflüssigkeit IRM 903.
- → Verbesserung des Druckverformungsrestes (ungetempert) mit Aktisil Q zu einer Dosierung von 75 phr.

Vorteile des Aktisil Q speziell in Verbindung mit Vernetzer E:

- → Keine Ausblühungen des Vernetzers.
- → Kein Kleben der unvulkanisierten Extrudate.
- → Stark verbesserte Standfestigkeit.

Wir geben Stoff für gute Ideen!

HOFFMANN MINERAL GmbH

Münchener Straße 75

DE-86633 Neuburg (Donau)

Telefon: +49 8431 53-0

Internet: www.hoffmann-mineral.de E-Mail: info@hoffmann-mineral.com

Unsere anwendungstechnische Beratung und die Informationen in diesem Bericht beruhen auf Erfahrung und erfolgen nach bestem Wissen und Gewissen, gelten jedoch nur als unverbindlicher Hinweis ohne jede Garantie. Außerhalb unseres Einflusses liegende Arbeits- und Einsatzbedingungen schließen einen Anspruch aus der Anwendung unserer Daten und Empfehlungen aus. Außerdem können wir keinerlei Verantwortung für Patentverletzungen übernehmen, die möglicherweise aus der Anwendung unserer Angaben resultieren.