

Silfit Z 91 in klassischen und elektrisch isolierenden Karosseriedichtprofilen

Inhalt

- Einleitung
- Experimentelles
- Ergebnisse
 - Mischungseigenschaften
 - > Extrusionseigenschaften
 - Ablagerungstest (Plating)
- Zusammenfassung

Status Quo

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

Karosseriedichtprofile können in zwei Bereiche unterteilt werden: klassisch und elektrisch isolierend

Mineralische Füllstoffe finden Anwendung in Karosseriedichtprofilen aus folgenden Gründen:

klassisch	→ Aufwertung der Profiloberfläche
elektrisch isolierend	→ Rußersatz zur Verminderung der elektrischen Leitfähigkeit
	→ Optimierung von verarbeitungstechnischen und mechanischen Eigenschaften

Zielsetzung

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

Effekt des kalzinierten Silfit Z 91 im Vergleich zu Sillitin und einem kalzinierten Kaolin im Hinblick auf

- Mischungseigenschaften
- Extrusionseigenschaften
- Ablagerungen bei der Extrusion (Plating)

Basisrezeptur Karosseriedichtprofil

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

_		
	klassisch	elektrisch isolierend
Keltan 8340 A	100,00	100,00
Zinkoxyd aktiv	5,00	5,00
Stearinsäure	1,00	1,00
PEG 3000	2,00	2,00
Calciumoxid	5,50	5,50
Corax N 550/30	110,00	60,00
Mineralischer Füllstoff	50,00	155,00
Sunpar 2280	65,00	65,00
Rhenogran DPG-80	0,50	0,50
Rhenogran MBTS-80	1,30	1,30
Rhenogran ZBEC-70	2,00	2,00
Rhenogran S-80	0,75	0,75
Rhenogran CLD-80	1,00	1,00
Rhenogran TP-50	2,00	2,00
Vulkalent E/C	0,50	0,50
Rhenogran CBS-80	0,50	0,50
Summe	347,05	402,05

Füllstoffe und Kennwerte

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

		Kalzinierter Kaolin	Neuburger Kieselerde		
		Polestar 200 R	Sillitin Z 86	Sillitin P 87	Silfit Z 91
Korngröße d ₅₀	[µm]	3,6	1,4	1,1	2,0
Korngröße d ₉₇	[µm]	19	6,9	4,3	10
Ölzahl	[g/100g]	60	48	53	59
Spezifische Oberfläche BET	[m²/g]	6,5	11	12	7,6
Kalzinierung		ja	keine	keine	ja

Mischungsherstellung und Vulkanisation

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

Mischen

Laborwalzwerk Ø 150 x 300 mm

Batchgröße: ca. 700 cm³

Walzentemperatur: 50 °C

Mischzeit: ca. 15 min.

Vulkanisation

Presse, 180 °C

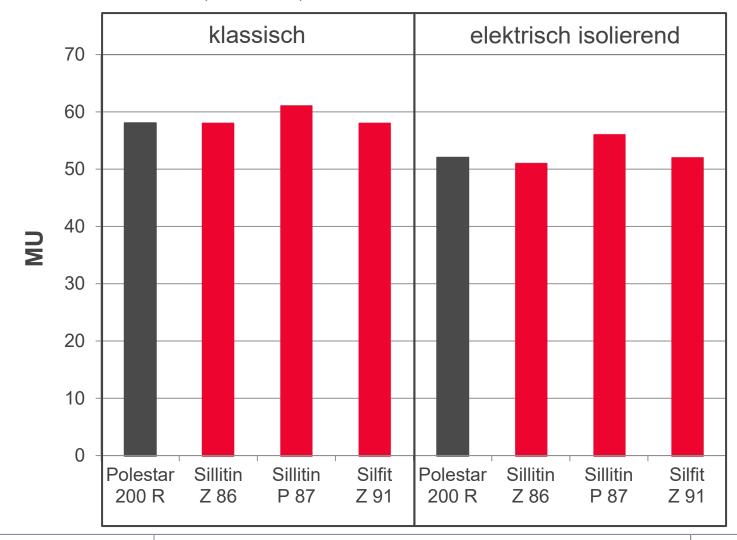
2 mm Platte: 6 min.

Druckverformungsrestprobekörper: 8 min.

Mooney-Viskosität

8

EINLEITUNG


EXPERIMENTELLES

ERGEBNISSE

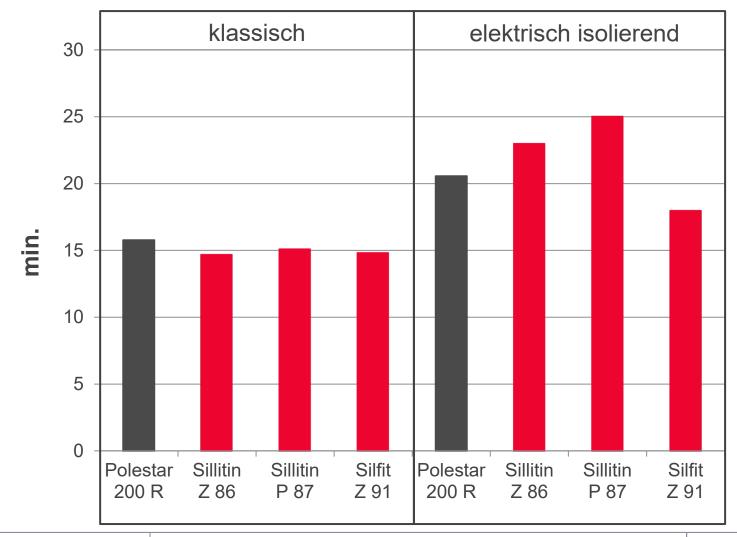
Mischungseigenschaften

ZUSAMMENFASSUNG

DIN 53 523 Teil 3, ML 1+4, 120 °C

Mooney-Scorchzeit

EINLEITUNG


EXPERIMENTELLES

ERGEBNISSE

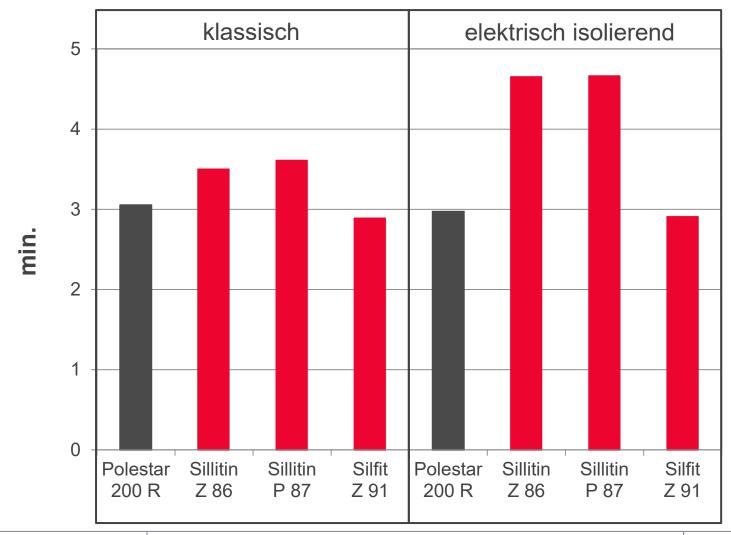
Mischungseigenschaften

ZUSAMMENFASSUNG

DIN 53 523 Teil 4, ML +5, 120 °C

Umsatzzeit t₉₀

EINLEITUNG


EXPERIMENTELLES

ERGEBNISSE

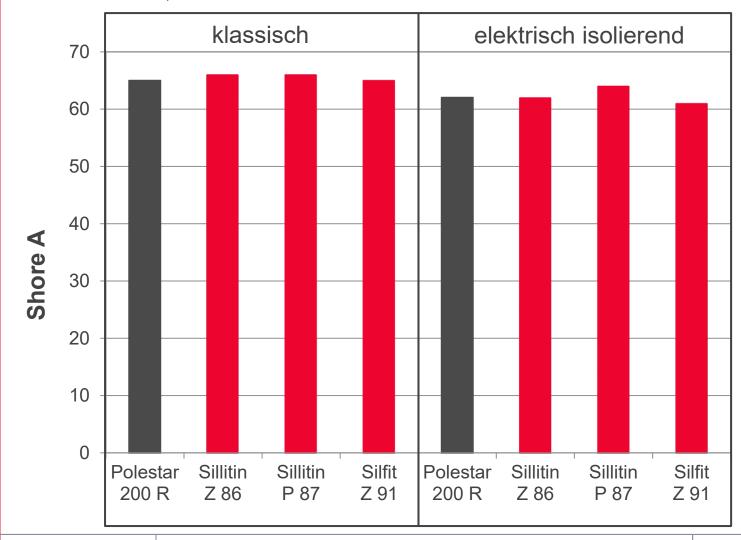
Mischungseigenschaften

ZUSAMMENFASSUNG

DIN 53 529-A3, 180 °C, 0,2° Auslenkung – Göttfert Elastograph

Härte

EINLEITUNG


EXPERIMENTELLES

ERGEBNISSE

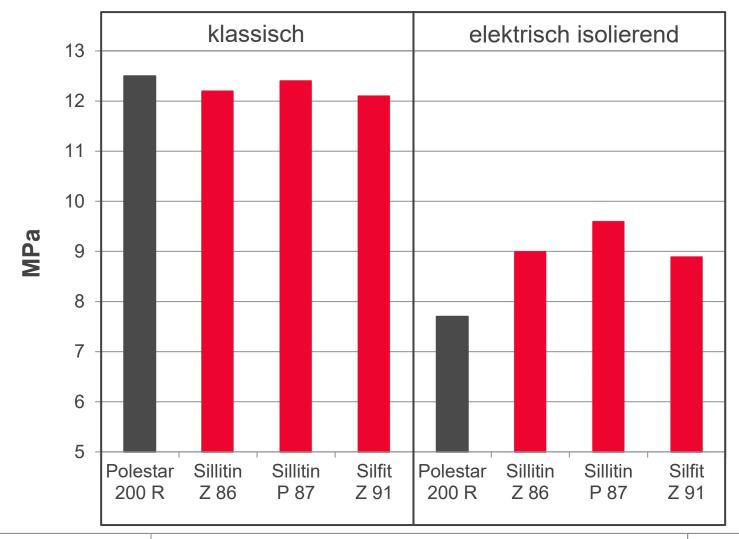
Mischungseigenschaften

ZUSAMMENFASSUNG

DIN 53 505-A, S2 Stab

Zugfestigkeit

EINLEITUNG


EXPERIMENTELLES

ERGEBNISSE

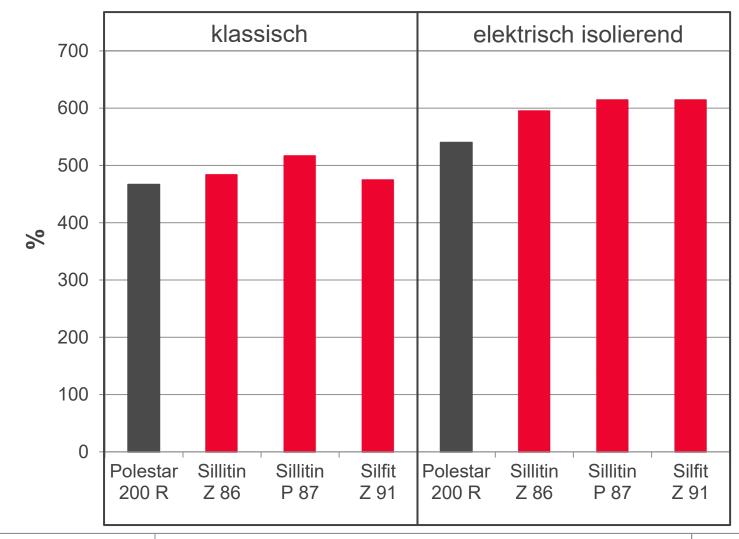
 Mischungseigenschaften

ZUSAMMENFASSUNG

DIN 53 504, S2

Reißdehnung

EINLEITUNG


EXPERIMENTELLES

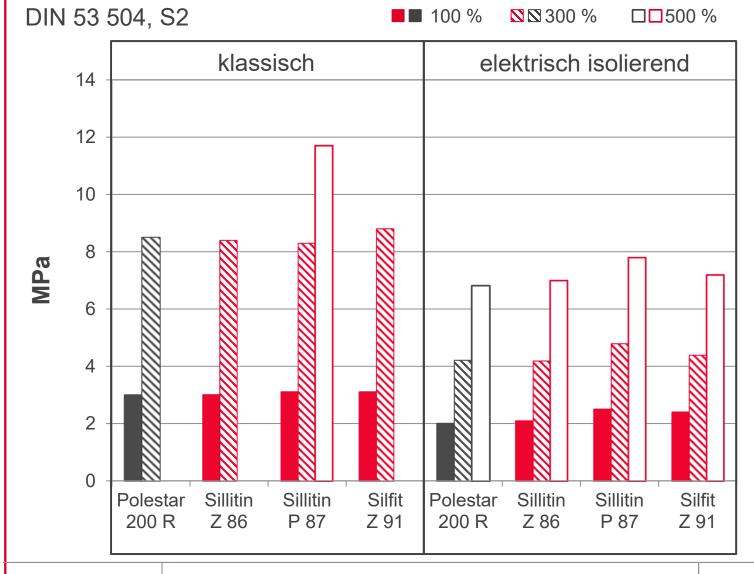
ERGEBNISSE

Mischungseigenschaften

ZUSAMMENFASSUNG

DIN 53 504, S2

Spannungswerte


EINLEITUNG

EXPERIMENTELLES

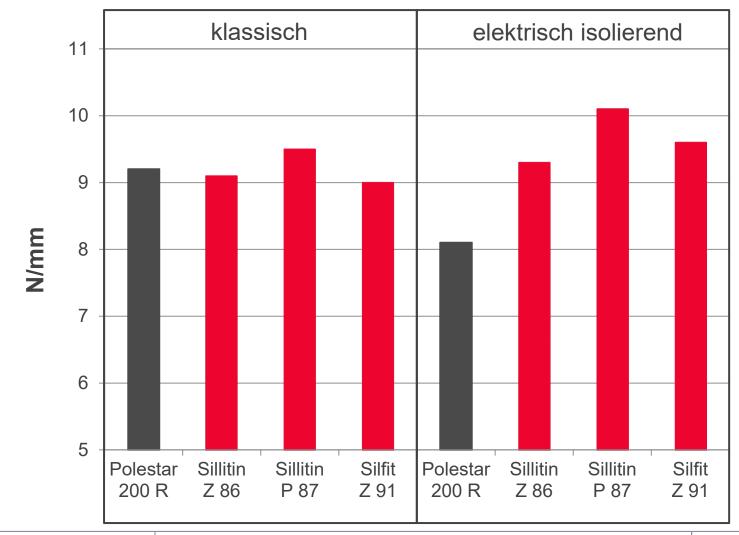
ERGEBNISSE

Mischungseigenschaften

ZUSAMMENFASSUNG

Weiterreißwiderstand

EINLEITUNG


EXPERIMENTELLES

ERGEBNISSE

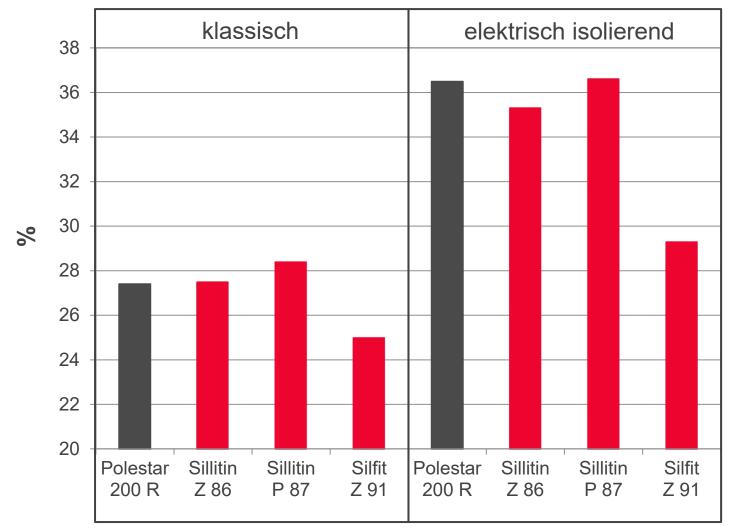
Mischungseigenschaften

ZUSAMMENFASSUNG

DIN ISO 34-1, Streifenprobe

Druckverformungsrest

EINLEITUNG


EXPERIMENTELLES

ERGEBNISSE

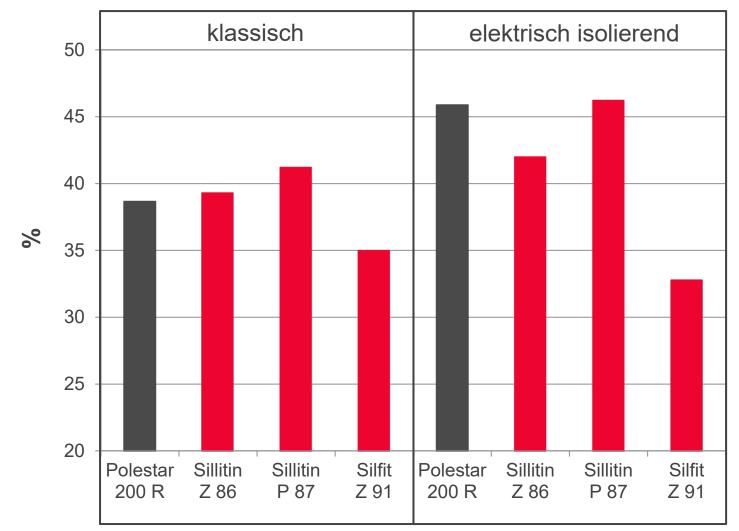
 Mischungseigenschaften

ZUSAMMENFASSUNG

DIN ISO 815-1 B, Abkühlverfahren A, 24 h / 100°C, 25 % Verformung

Druckverformungsrest

EINLEITUNG


EXPERIMENTELLES

ERGEBNISSE

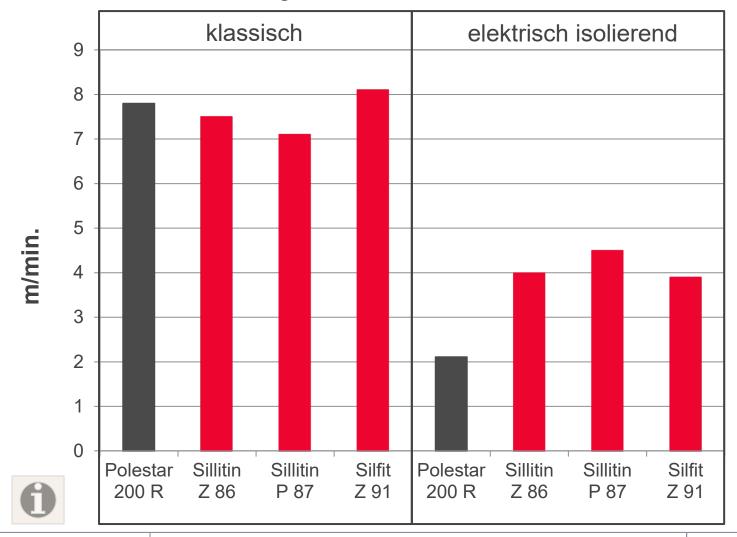
 Mischungseigenschaften

ZUSAMMENFASSUNG

VW PV 3307, 100 h / 70°C, 50 % Verf., Abkühlen 3 h, Relaxation 5 s

Garvey-Extrusion Längenausstoß

EINLEITUNG


EXPERIMENTELLES

ERGEBNISSE

Extrusion

ZUSAMMENFASSUNG

ASTM D 2230, Bewertung 4 4 4 4

VM-2/0709/03.2025

20

Ablagerungen bei der Extrusion

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

Bei der Extrusion und im Spritzguss können Ablagerungen in der Spritzscheibe (Plating) auftreten.

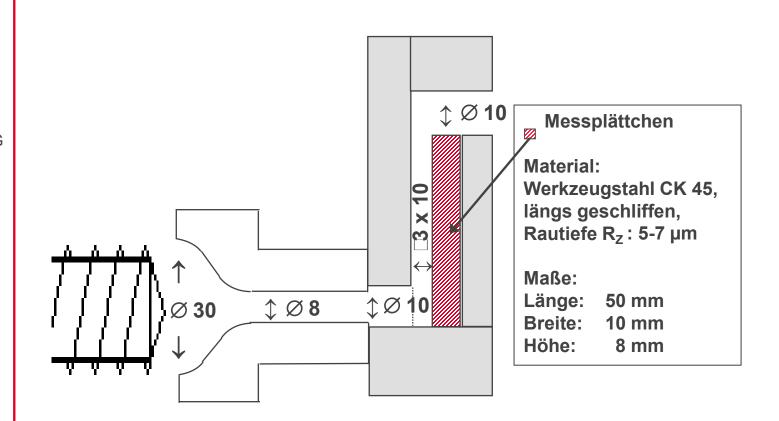
Die Füllstoffauswahl spielt neben anderen Faktoren eine erhebliche Rolle.

Dies wird im Folgenden anhand einer abgewandelten Formulierung dargestellt.

Da aus vorherigen Untersuchungen bekannt ist, dass mit kalziniertem Kaolin kein Plating festzustellen ist, wird hier zum Vergleich nur ein Vertreter der Neuburger Kieselerde Produkte herangezogen.

Folgender Versuchsaufbau mit einer am Extruder angeflanschten Messvorrichtung diente zur Ermittlung der Ablagerungsneigung.

Messvorrichtung



EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

alle Abmessungen in mm

Parameter zur Platingbestimmung

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

Extruder		Schwabenthan Polytest 30 R
Schneckendurchmesser	[mm]	30
Prozesslänge	[mm]	450
Temperatursollwert Kopf / Zone 1 / Zone 2	[°C]	60 / 60 / 60
Drehzahl	[U/min]	100
Platingmessvorrichtung		siehe Zeichnung
Messkanal Ixbxh	[mm]	50 x 10 x 3
Messplättchenmaterial		Werkzeugstahl CK 45, längs geschliffen
Messplättchen Rautiefe R _z (quer zur Fließrichtung)	[µm]	5-7
Fütterstreifen	[mm]	30 x 6

Basisrezeptur – Plating

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

	≙ klassisch		≙ elektrisch isolierend		
Vistalon 8600	100	100	100	100	
Sunpar 2280	75	75	75	75	
Corax N 550/30	90	90	60	60	
Sillitin Z 86	50		110		
Silfit Z 91		50		110	

Ablagerungen auf den Messplättchen

extrudierte

Menge [kg]

Massen-

[g/min.]

durchsatz

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

Plating

ZUSAMMENFASSUNG

	<u>`</u> sisch	≙ elektrisch isolierend		
Sillitin Z 86	Silfit Z 91	Sillitin Z 86	Silfit Z 91	
5	5	5	5	
546	570	616	600	

Fazit

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

Mit dem kalzinierten Silfit Z 91 ergeben sich folgende positive Effekte:

- schnelle Ausvulkanisation
- Basismischungseigenschaften zwischen Sillitin Z 86 und Sillitin P 87
- zu kalziniertem Kaolin vergleichbare Basismischungseigenschaften in klassischen Karosseriedichtprofilen mit leicht besserem Druckverformungsrest
- höhere Zugfestigkeit, höheren Weiterreißwiderstand und deutlich besseren Druckverformungsrest als kalzinierter Kaolin in elektrisch isolierenden Karosseriedichtprofilen
- Extrusionseigenschaften zwischen Sillitin Z 86 und Sillitin P 87
- höhere Extrusionsgeschwindigkeit als mit kalziniertem Kaolin in elektrisch isolierenden Karosseriedichtprofilen
- Vermeidung von füllstoffverursachten Ablagerungen bei der Extrusion

Wir geben Stoff für gute Ideen!

HOFFMANN MINERAL GmbH

Münchener Straße 75

DE-86633 Neuburg (Donau)

Telefon: +49 8431 53-0

Internet: www.hoffmann-mineral.de E-Mail: info@hoffmann-mineral.com

Unsere anwendungstechnische Beratung und die Informationen in diesem Bericht beruhen auf Erfahrung und erfolgen nach bestem Wissen und Gewissen, gelten jedoch nur als unverbindlicher Hinweis ohne jede Garantie. Außerhalb unseres Einflusses liegende Arbeits- und Einsatzbedingungen schließen einen Anspruch aus der Anwendung unserer Daten und Empfehlungen aus. Außerdem können wir keinerlei Verantwortung für Patentverletzungen übernehmen, die möglicherweise aus der Anwendung unserer Angaben resultieren.