

Trinkwasserdichtung EPDM E-DIN EN 681-1 (07/16) Teilersatz von Ruß durch Neuburger Kieselerde

Autor: Karin Müller

Inhalt

- Einleitung
- Experimentelles
- Ergebnisse
 - Rheologische Eigenschaften
 - Mechanische Eigenschaften
 - Wasserlagerung
 - Heißluftalterung
 - Kostenaspekte
- Zusammenfassung
- Anhang

Status Quo

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

ANHANG

- Verwendungsbereich: Elastomere im Kontakt mit Trinkwasser Härtebereich 70 IRHD (Rezepturempfehlung von Arlanxeo).
- Strenge Vorgaben der Positivliste Teil 1 (ab 01/22), Teil 2 (bis 12/21) und Teil 3 des Umwelt Bundesamts Trinkwasser (UBA) an die Rohstoffe müssen eingehalten werden.
- PAK¹-Anteil in der Mischung nur 10 % des geforderten Grenzwertes der Trinkwasserverordnung (Stand 2011).
- Purex HS 45: reduzierter PAK-Anteil, hohe Preisschwankungen mit langfristig ansteigendem Kostenniveau, temporäre Lieferengpässe.
- Neuburger Kieselerde: Preis steigt langfristig nur geringfügig an, hohe Kalkulierbarkeit und Verfügbarkeit, zuverlässige Lieferzeiten. Reinheitsanforderungen BfR² Teil 1 A LII erfüllt, erniedrigt PAK-Anteil im Compound.

¹Polyzyklische aromatische Kohlenwasserstoffe

²Bundesinstitut für Risikobewertung

Zielsetzung

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

ANHANG

Teilersatz des Ruß Purex HS 45 durch

Neuburger Kieselerde

unter Einhaltung der Norm E-DIN EN 681-1 (07/16)

und zusätzlich positivem Effekt auf Kosten.

Anforderungsprofil

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

ANHANG

E-DIN EN 681-1 (Entwurf Juli 2016)

Elastomer-Dichtungen – Werkstoff-Anforderungen für Rohrleitungsdichtungen für Anwendungen in der Wasserversorgung und Entwässerung Teil 1: Elastomere

- WB Kalte Trinkwasserversorgung (T ≤ 50 °C) und durchgehend warme Trinkwasserversorgung (T ≤ 110 °C)
- WD Kalte Wasserversorgung (keine Trinkwassereigenschaften)
 (T ≤50 °C) und durchgehend warme Wasserversorgung
 (keine Trinkwassereigenschaften) (T ≤110 °C)
- Härte 70 IRHD (+/-5 IRHD)

Basisrezeptur

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

ANHANG

		phr
Keltan®2650	EPDM amorph	100,0
Zinkoxyd aktiv	Zinkoxid	3,0
Stearinsäure	Verarbeitungshilfsmittel	0,3
Purex HS 45	FEF-Ruß mit reduziertem PAK-Anteil	80,0
Caldic PIB 190	Polyisobutylen, Weichmacher	15,0
Safic Chem OMB	BPH, Alterungsschutzmittel	0,75
Luperox 101-XL 45	DHBP, Peroxid	5,33
TAC 70	Aktivator	0,7
Summe		205,08

Alle ausgewählten Rohstoffe entsprechen den Kriterien der Positivliste des UBA zur Herstellung von Elastomeren im Kontakt mit Trinkwasser Teil 1 und Teil 3 (Stand Juli 2021).

Rezepturvarianten

Dosierungen in phr für Härtegleichheit

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

ANHANG

Purex HS 45	Austausch- anteil	Sillitin Z 86	Aktisil VM 56
80			
60	25 %	40	40
50	37 %	60	60
40	50 %	80	80

Füllstoffe und Kennwerte

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

ANHANG

		Purex HS 45	Sillitin Z 86	Aktisil VM 56
Dichte	[g/cm ³]	1,8	2,6	2,6
Korngröße d ₅₀	[µm]		1,9	2,2
Korngröße d ₉₇	[µm]		9,0	10
Siebrückstand > 40 µm	[mg/kg]		20	20
Siebrückstand 45 µm / 325 mesh	ppm	≥ 50		
Ölzahl	[g/100g]		55	45
Jodadsorption	[mg/g]	43 +/- 5		
Spezifische Oberfläche BET	[m²/g]		12	9
STSA Oberfläche	[m²/g]	39 +/- 5		
Funktionalisierung		ohne	ohne	Vinyl

Mischungsherstellung und Vulkanisation

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

ANHANG

Mischen

Laborwalzwerk Ø 150 x 300 mm

Batchgröße: ca. 800 cm³

Walzentemperatur: 50 °C

Mischzeit: ca. 20 min.

Vulkanisation

Presse: 180 °C

Vulkanisationszeit: t_{90} + 10 % bzw. 12 min.

Temperung

nur wenn angegeben, 2 h / 125 °C

Prüfnormen

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

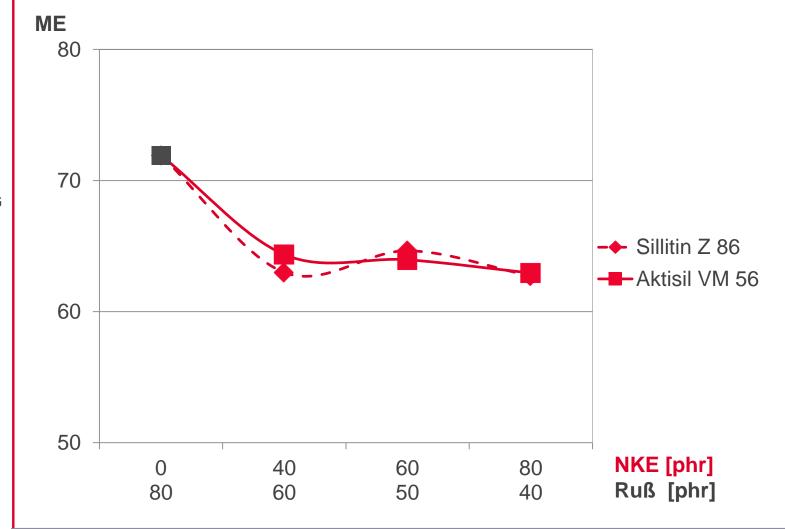
ANHANG

Prüfung	Norm
Mooney Viskosität, ML 1+4	DIN ISO 289-1
Mooney Scorch, ML +5	DIN ISO 289-2
Rotorloses Vulkameter	DIN 53 529 Part 3
Härte	DIN ISO 7619-1
Zugfestigkeit	DIN 53 504, S2
Spannungswert 100 %	DIN 53 504, S2
Reißdehnung	DIN 53 504, S2
Rückprall	DIN 53 512
Weiterreißwiderstand, Streifenprobe	DIN ISO 34-1, A
Weiterreißwiderstand, Delft	DIN ISO 34-2, A
Druckverformungsrest	DIN ISO 815-1, B
Druckverformungsrest	DIN ISO 815-2, B
Heißluftalterung	DIN 53 508
Wasserlagerung	ISO 1817

Mooney-Viskosität

EINLEITUNG

EXPERIMENTELLES


ERGEBNISSE

 Rheologische Eigenschaften

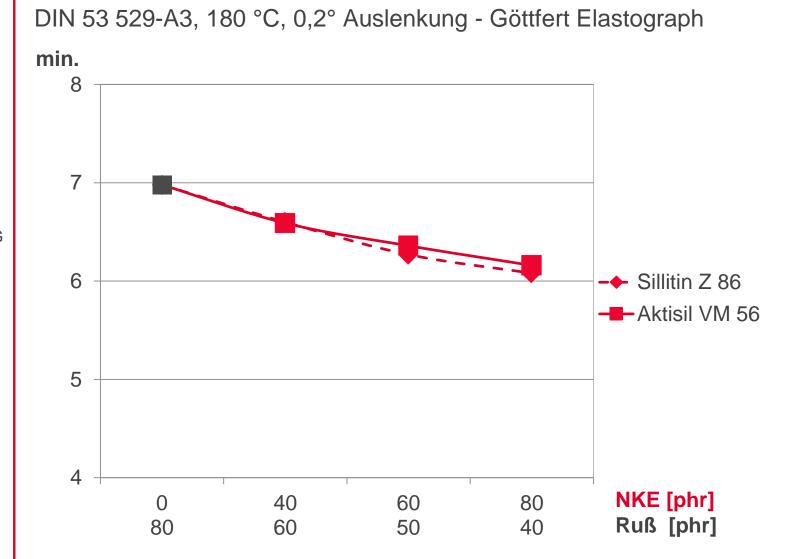
ZUSAMMENFASSUNG

ANHANG

DIN ISO 289-1, ML 1+4 100 °C

VM-1/0520/09.2021

Umsatzzeit t₉₀


EINLEITUNG

EXPERIMENTELLES

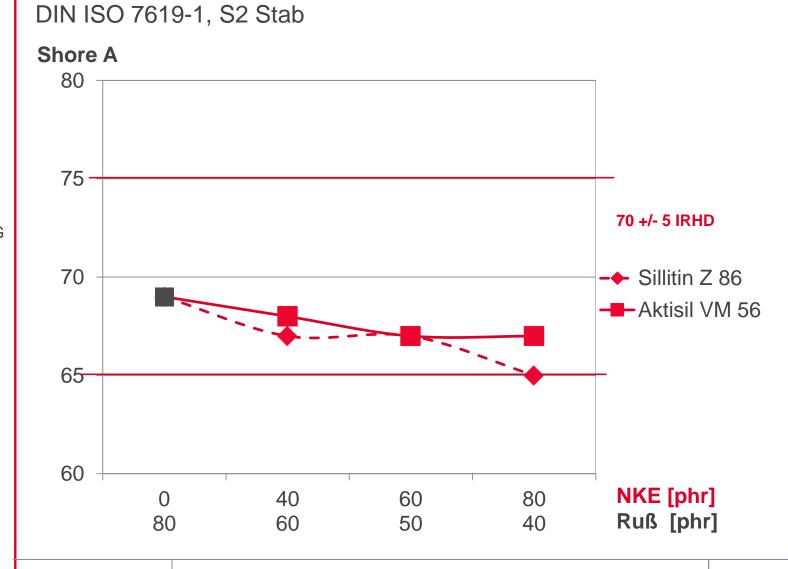
ERGEBNISSE

 Rheologische Eigenschaften

ZUSAMMENFASSUNG

Härte

EINLEITUNG


EXPERIMENTELLES

ERGEBNISSE

 Mechanische Eigenschaften

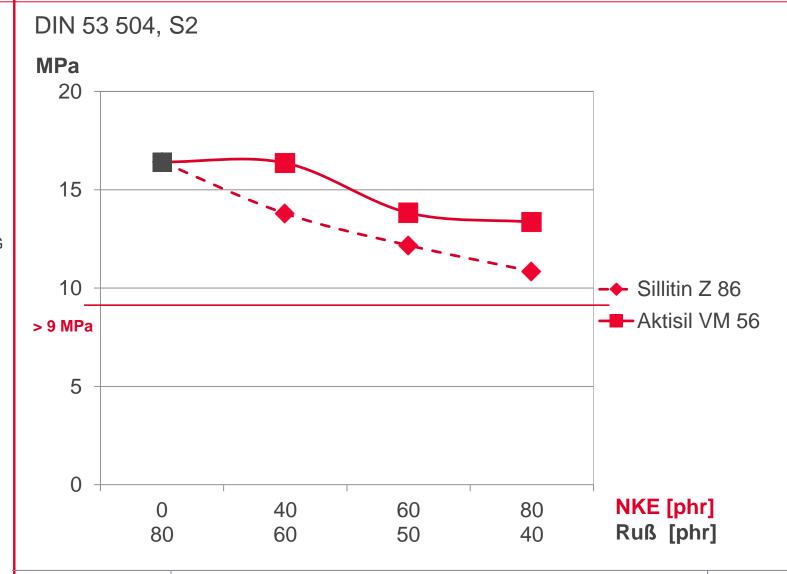
ZUSAMMENFASSUNG

ANHANG

VM-1/0520/09.2021

Zugfestigkeit

EINLEITUNG


EXPERIMENTELLES

ERGEBNISSE

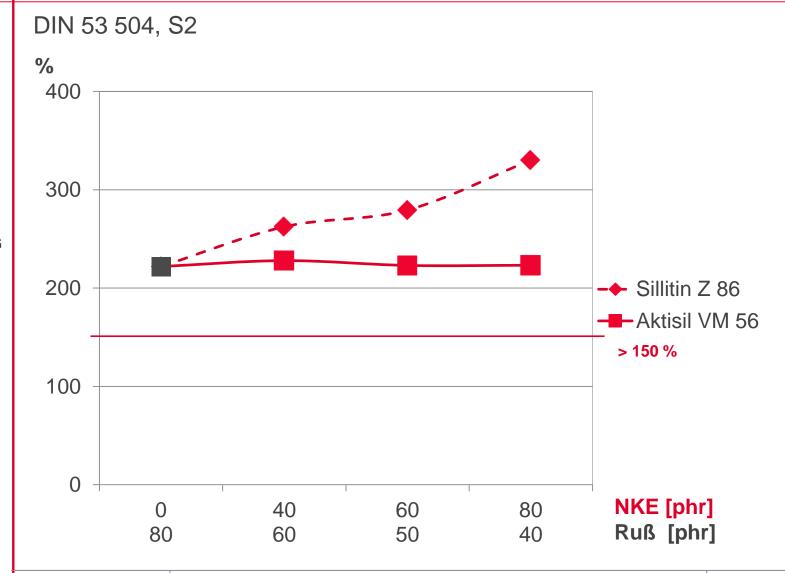
 Mechanische Eigenschaften

ZUSAMMENFASSUNG

ANHANG

VM-1/0520/09.2021

Reißdehnung


EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

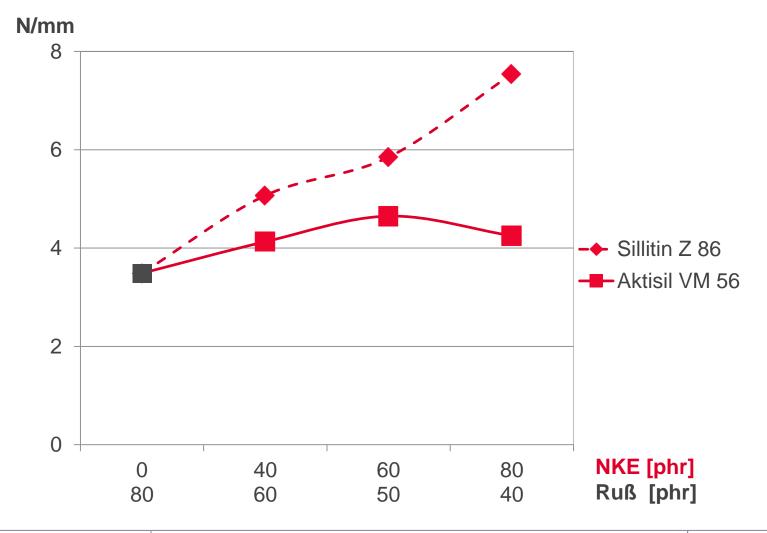
 Mechanische Eigenschaften

ZUSAMMENFASSUNG

Weiterreißwiderstand

EINLEITUNG

EXPERIMENTELLES


ERGEBNISSE

 Mechanische Eigenschaften

ZUSAMMENFASSUNG

ANHANG

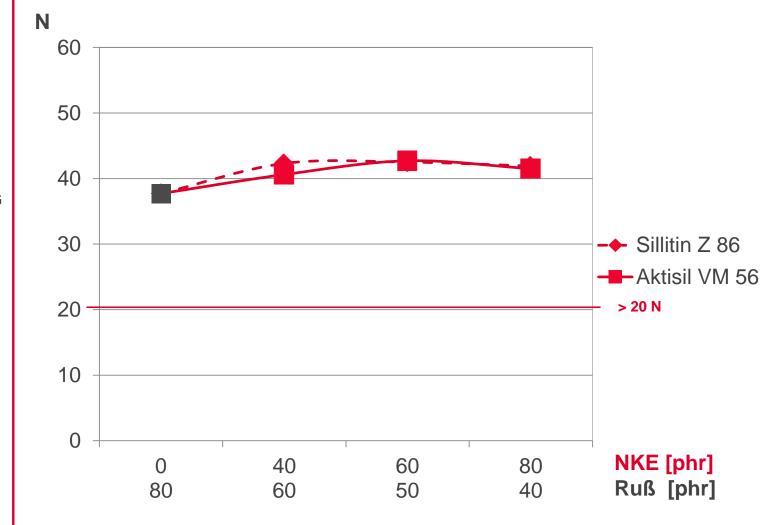
DIN ISO 34-1, A (Streifenprobe)

VM-1/0520/09.2021

Weiterreißwiderstand

EINLEITUNG

EXPERIMENTELLES


ERGEBNISSE

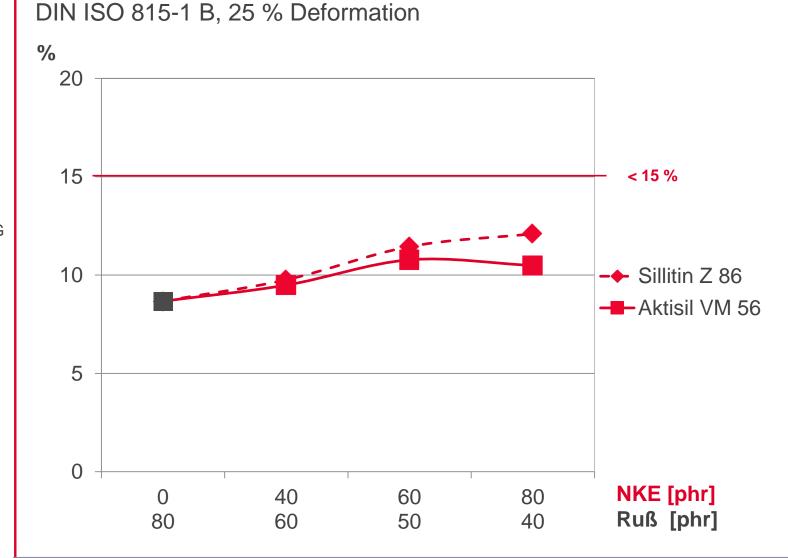
 Mechanische Eigenschaften

ZUSAMMENFASSUNG

ANHANG

VM-1/0520/09.2021

Druckverformungsrest 72 h / 23°C Vulkanisationszeit t₉₀ + 10 %


EINLEITUNG

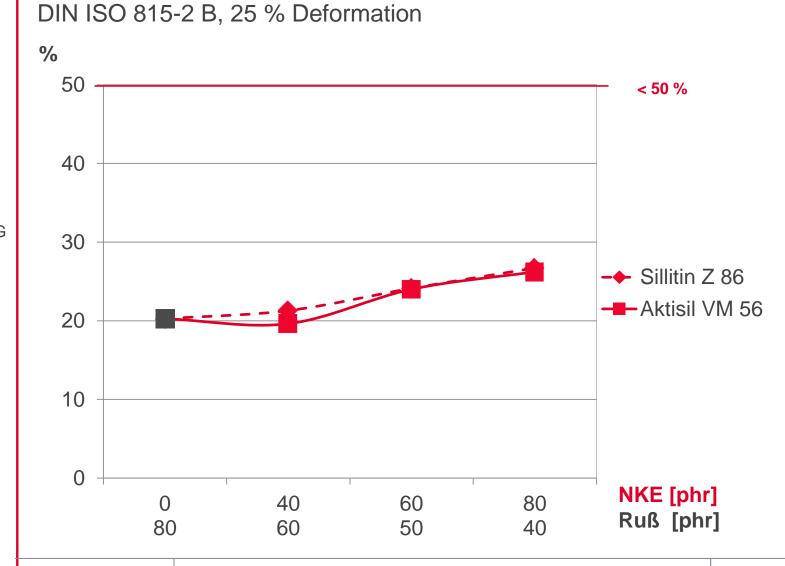
EXPERIMENTELLES

ERGEBNISSE

 Mechanische Eigenschaften

ZUSAMMENFASSUNG

Druckverformungsrest 72 h / -10 °C Vulkanisationszeit t₉₀ + 10 %


EINLEITUNG

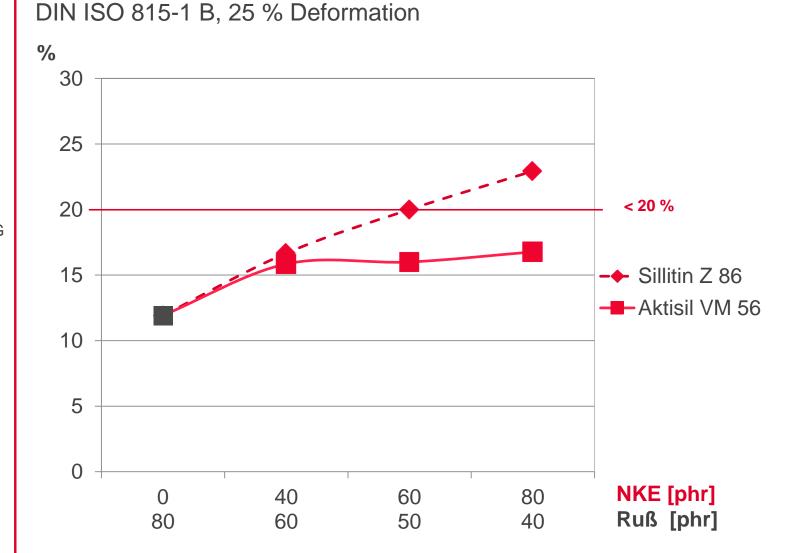
EXPERIMENTELLES

ERGEBNISSE

 Mechanische Eigenschaften

ZUSAMMENFASSUNG

Druckverformungsrest 24 h / 125 °C Vulkanisationszeit t₉₀ + 10 %


EINLEITUNG

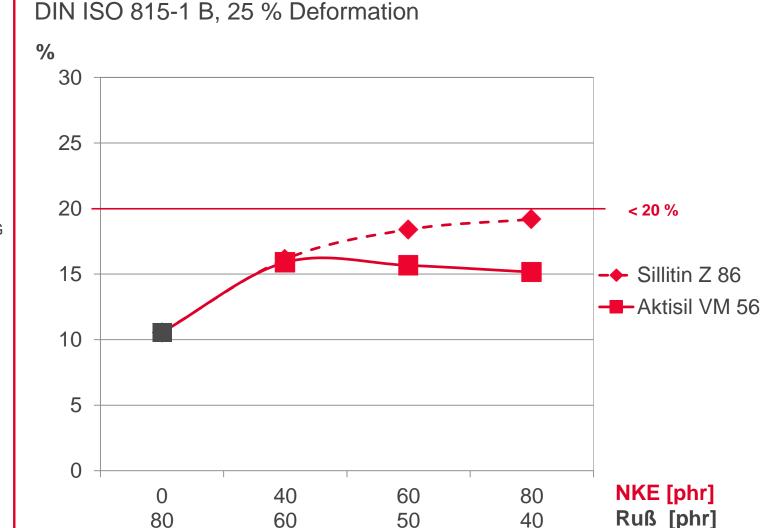
EXPERIMENTELLES

ERGEBNISSE

 Mechanische Eigenschaften

ZUSAMMENFASSUNG

Druckverformungsrest 24 h / 125 °C Vulkanisationszeit 12 min.


EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

 Mechanische Eigenschaften

ZUSAMMENFASSUNG

Druckverformungsrest 24 h / 125 °C Temperung 2 h / 125 °C


EINLEITUNG

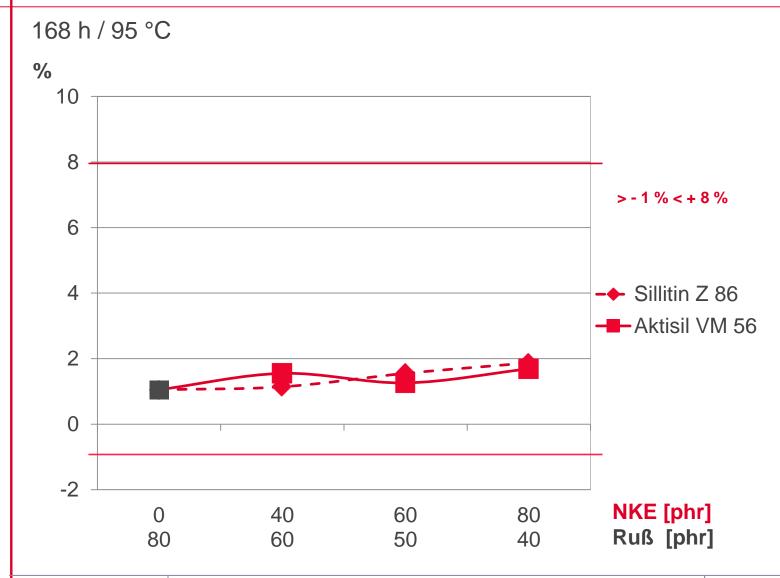
EXPERIMENTELLES

ERGEBNISSE

 Mechanische Eigenschaften

ZUSAMMENFASSUNG

Lagerung in dest. Wasser Volumenänderung


EINLEITUNG

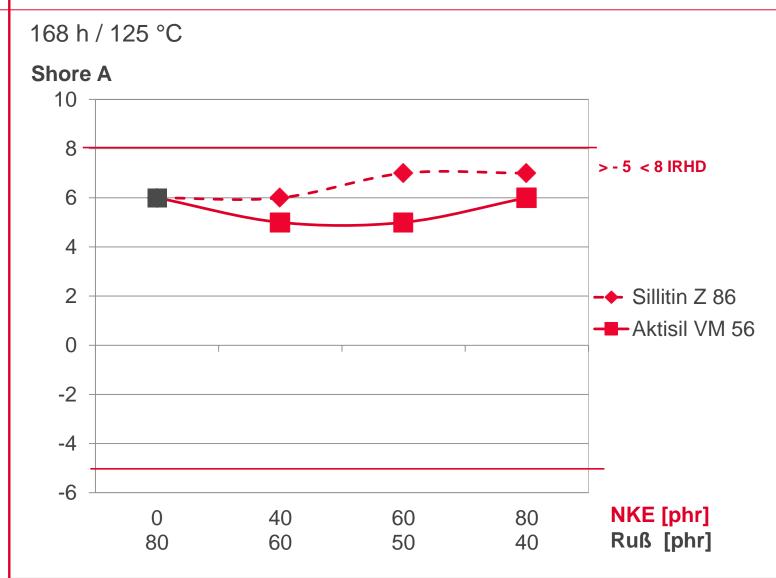
EXPERIMENTELLES

ERGEBNISSE

nach Wasserlagerung

ZUSAMMENFASSUNG

Alterung in Heißluft Härteänderung


EINLEITUNG

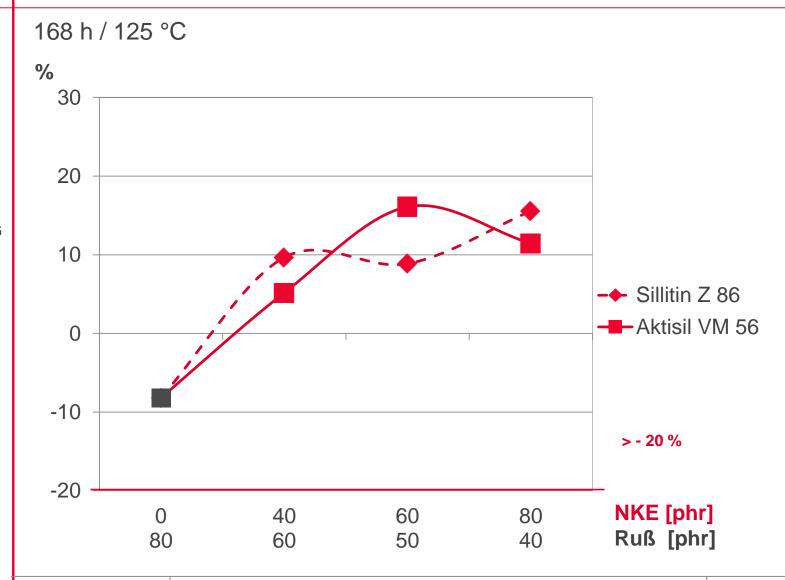
EXPERIMENTELLES

ERGEBNISSE

nach Heißluftlagerung

ZUSAMMENFASSUNG

Alterung in Heißluft Änderung Zugfestigkeit


EINLEITUNG

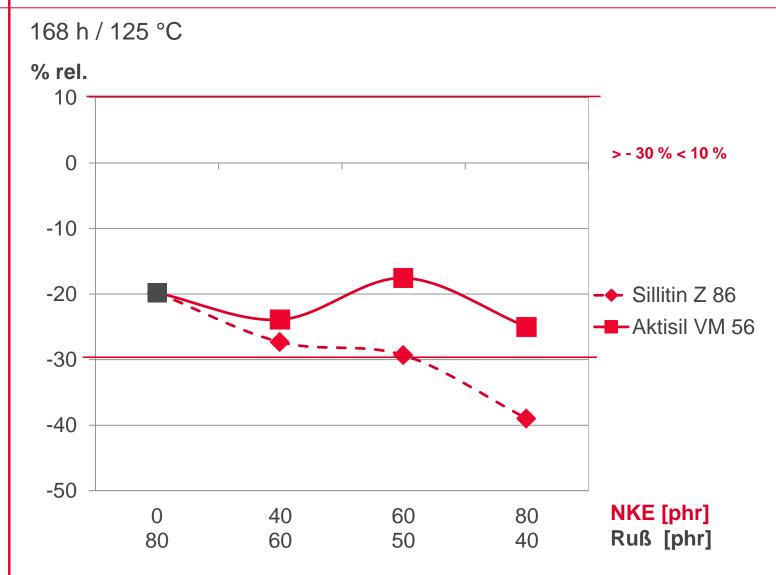
EXPERIMENTELLES

ERGEBNISSE

nach Heißluftlagerung

ZUSAMMENFASSUNG

Alterung in Heißluft Änderung Reißdehnung


EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

nach Heißluftlagerung

ZUSAMMENFASSUNG

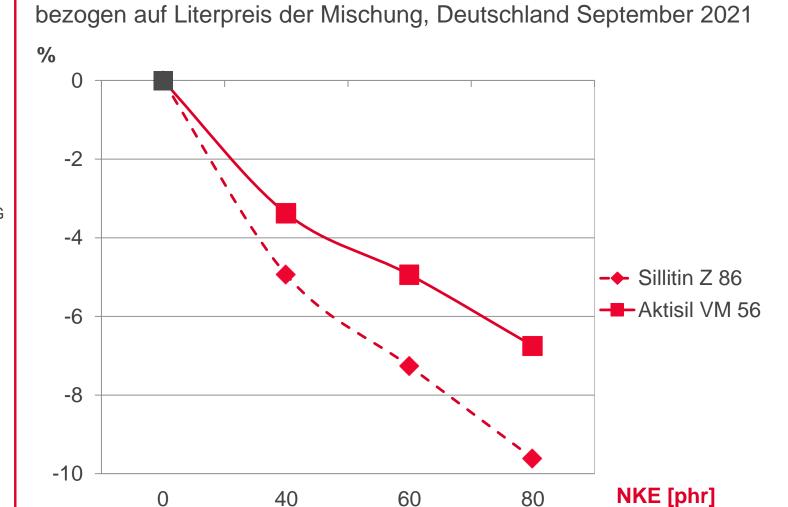
Kostenaspekte

80

Ruß [phr]

40

EINLEITUNG


EXPERIMENTELLES

ERGEBNISSE

Kostenaspekte

ZUSAMMENFASSUNG

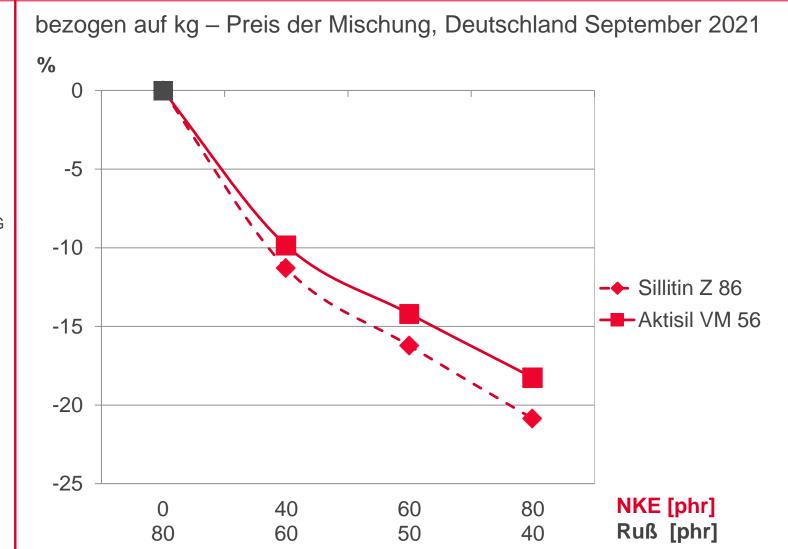
ANHANG

VM-1/0520/09.2021 27

50

Kostenaspekte

EINLEITUNG


EXPERIMENTELLES

ERGEBNISSE

Kostenaspekte

ZUSAMMENFASSUNG

ANHANG

VM-1/0520/09.2021

Zusammenfassung 1

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

ANHANG

Aktisil VM 56

- Deutliche Kostensenkung.
- Erfüllt das Anforderungsprofil der Norm auch bis 50 % Rußaustausch auf hohem Niveau.
- Niedrigere Mooney-Viskosität und kürzere Vulkanisationszeit t_{90.}

Zusammenfassung 2

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

ANHANG

Sillitin Z 86

- Noch deutlicheres Kostensenkungspotential als mit Aktisil VM 56.
- Positiver Effekt auf Weiterreißwiderstand DIN ISO 34-1 Streifenprobe.
- Niedrigere Mooney-Viskosität und kürzere Vulkanisationszeit t_{90.}
- 25 % Rußaustausch erfüllen Anforderungsprofil .
- 37 % Rußaustausch erfordert längere Vulkanisationszeit oder Temperung wegen Druckverformungsrestanforderung, Reißdehnungsänderung nach Heißluftalterung grenzwertig.
- 50 % Rußaustausch, als kostengünstigste Alternative, erfordert jedoch Rezepturoptimierung: Beispielweise durch Tausch des Alterungsschutzmittel BPH gegen polymeres TMQ verbessern sich sowohl Druckverformungsrest als auch Eigenschaften nach Heißluftalterung deutlich. Polymeres TMQ ist aktuell (Stand September 2021) jedoch nur in Positivliste Teil 2 des Umweltbundesamts genannt.

Wir geben Stoff für gute Ideen!

HOFFMANN MINERAL GmbH

Münchener Straße 75

DE-86633 Neuburg (Donau)

Telefon: +49 8431 53-0

Internet: www.hoffmann-mineral.de E-Mail: info@hoffmann-mineral.com

Unsere anwendungstechnische Beratung und die Informationen in diesem Bericht beruhen auf Erfahrung und erfolgen nach bestem Wissen und Gewissen, gelten jedoch nur als unverbindlicher Hinweis ohne jede Garantie. Außerhalb unseres Einflusses liegende Arbeits- und Einsatzbedingungen schließen einen Anspruch aus der Anwendung unserer Daten und Empfehlungen aus. Außerdem können wir keinerlei Verantwortung für Patentverletzungen übernehmen, die möglicherweise aus der Anwendung unserer Angaben resultieren.

Ergebnistabelle

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

ANHANG

		Purex HS 45 Sillitin Z 86 + Purex HS 45		Aktisil VM 56 + Purex HS 45				
		80 phr	40 phr 60 phr	60 phr 50 phr	80 phr 40 phr	40 phr 60phr	60 phr 50 phr	80 phr 40 phr
Rheologie								
Mooney Viskosität, ML 1+4, 100 °C	ME	72	63	65	63	64	64	63
Mooney Viskosität, ML 1+4, 120 °C	ME	53	47	50	47	47	48	48
Temperatur Vulkameter	°C			18	30			
Rotorloses Vulkameter M _{min}	Nm	0,10	0,08	0,09	0,08	0,08	0,08	0,08
Rotorloses Vulkameter M _{max}	Nm	0,80	0,76	0,73	0,70	0,79	0,70	0,71
Rotorloses Vulkameter M _{max} -M _{min}	Nm	0,71	0,68	0,65	0,62	0,71	0,62	0,63
Rotorloses Vulkameter $V_{\rm max}$	Nm/min	0,22	0,24	0,24	0,24	0,24	0,23	0,25
Rotorloses Vulkameter t ₅	min.	0,47	0,48	0,47	0,46	0,48	0,47	0,45
Rotorloses Vulkameter t_{90}	min.	7,0	6,6	6,3	6,1	6,6	6,4	6,2

Ergebnistabelle

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

ANHANG

		Purex HS 45	Sillitin Z 86 + Purex HS 45		Aktisil VM 56 + Purex HS 45			
		80 phr	40 phr 60 phr	60 phr 50 phr	80 phr 40 phr	40 phr 60phr	60 phr 50 phr	80 phr 40 phr
Mechanische Eigenscha	aften nac	h Vulkanisation						
Härte	Sh. A	69	67	67	65	68	67	67
Zugfestigkeit	MPa	16	14	12	11	16	14	13
Spannungswert 100 %	MPa	5,0	4,7	4,6	3,8	5,5	5,2	5,3
Reißdehnung	%	222	262	279	330	228	223	223
Weiterreißwiderstand Streifenprobe	N/mm	3,5	5,1	5,9	7,5	4,1	4,7	4,3
Weiterreißwiderstand Delft	N	38	42	43	42	41	43	42
Druckverformungsrest, 72 h / 23 °C, 25 % Def.	%	8,7	9,8	11	12	9,5	11	10
Druckverformungsrest, 72 h / -10 °C, 25 % Def.	%	20	21	24	27	20	24	26
Druckverformungsrest, 24 h / 125 °C, 25 % Def. Vulkanisation t ₉₀ + 10 %	%	12	17	20	23	16	16	17
Druckverformungsrest, 24 h / 125 °C, 25 % Def. Vulkanisation 12 min.	%	11	16	18	19	16	16	15
Druckverformungsrest, 24 h / 125 °C, 25 % Def. Temperung 2 h / 125 °C	%	12	16	18	20	16	16	16

Ergebnistabelle

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

ANHANG

		Purex HS 45	Sillitin Z 86 + Purex HS 45		Aktisil VM 56 + Purex HS 45			
		80 phr	40 phr 60 phr	60 phr 50 phr	80 phr 40 phr	40 phr 60phr	60 phr 50 phr	80 phr 40 phr
Mechanische Eigenscha	aften nac	h Lagerung in des	t. Wasser	168 h / 9	5 °C			
Härte	Sh. A	70	67	66	64	69	68	67
Zugfestigkeit	MPa	17	15	13	11	16	14	14
Reißdehnung	%	208	289	325	391	239	247	250
Δ Härte	Sh. A	+1	0	-1	-1	+1	+1	0
Δ Zugfestigkeit	%	+3,8	+6,5	+9,5	+4,6	-2,3	+2,4	+2,0
Δ Reißdehnung	%	-6,4	+10	+16	+18	+5,0	+11	+12
Volumenänderung	%	+1,1	+1,1	+1,6	+1,9	+1,6	+1,3	+1,7
Mechanische Eigenscha	aften nac	h Lagerung in Heiſ	Sluft 168 h	n / 125 °C				
Härte	Sh. A	75	73	74	72	73	72	73
Zugfestigkeit	MPa	17	15	14	13	15	16	15
Reißdehnung	%	169	194	212	215	170	188	176
Δ Härte	Sh. A	+6	+6	+7	+7	+5	+5	+6
Δ Zugfestigkeit	%	-8,2	+9,7	+8,9	+16	-5,2	-16	-11
Δ Reißdehnung	%	-20	-27	-29	-39	-24	-18	-25