

Partieller Rußersatz durch Neuburger Kieselerde in zelligen EPDM-Profilcompounds

Autor: Nicole Holzmayr

EINLEITUNG EXPERIMENTELLES	zellige Profile	häufiger Einsatz für Automobilanwendungen wegen Gewichtsersparnis				
ERGEBNISSE ZUSAMMENFASSUNG		oftmals elektrisch isolierend zur Vermeidung elektro- chemischer Korrosion				
		pur nur einsetzbar für klassische, elektrisch leitfähige Anwendungen				
	Ruis	Anwendungen starke Abhängigkeit von Rohölpreisen				
	Neuburger	auch einsetzbar für elektrisch isolierende Anwendungen				
	Kieselerde	kaum Abhängigkeit von Rohölpreisen				
	VM-3/1220/03.2025		2			

Zielgrößen

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

Dichte

- mechanische Eigenschaften
- elektrische Eigenschaften
- Zellstruktur
- Wasseraufnahme
- Mischungskosten

Rußaustausch durch Neuburger Kieselerde

Basisrezeptur

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

Rohstoff	phr		
Keltan 8550C	100		
N 550	wie angegeben		
Neuburger Kieselerde (NKE)	wie angegeben		
Process Oil P 460	70		
Zinkoxyd aktiv	8		
Stearinsäure	1		
Kezadol GR	2,25		
PEG 4000	2		
Rhenogran DPG-80	1,1		
Rhenogran MBT-80	2		
Rhenogran ZBEC-70	2		
Rhenogran TP-50	4		
Mahlschwefel	1,52		
Rhenogran CLD-80	1		
TRACEL K 3/95	2,5		
TRACEL OBSH 75 EPR-1	1,9		

Füllstoffkombinationen

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

in phr	klassisch rußgefüllt	klassisch Rußaustausch, partiell	nicht elektrisch leitfähig
N 550 [vol.%]	18,8	15,3	11,9
N 550	85	70	55
NKE	-	30	60

Füllstoffe und Kennwerte

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

Füllstoff	Beschreibung	Funktionali- sierung
N 550	FEF-Ruß	-
Sillitin P 87	Neuburger Kieselerde, d ₅₀ : 1,5 μm	-
Sillitin Z 86	Neuburger Kieselerde, d ₅₀ : 1,9 μm	-
Sillitin N 75*	Neuburger Kieselerde, d ₅₀ : 3,0 µm	-
Aktisil PF 216	Neuburger Kieselerde, d ₅₀ : 2,2 µm Basis: Sillitin Z 86	Tetrasulfan, hydrophob
Aktifit PF 115	Kalzinierte Neuburger Kieselerde, d ₅₀ : 2,0 µm Basis: Silfit Z 91	Amino, hydrophob

*Die Untersuchungen wurden mit Sillitin N 82 durchgeführt. Dieses Produkt ist nicht mehr verfügbar. Empfehlung: Sillitin N 75

VM-3/1220/03.2025

Vorgehensweise

Mischungsherstellung,

Extrusion und Vulkanisation

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

Mischen	
Laborwalzwerk	Ø 150 x 300 mm
Batchgröße	ca. 800 g
Walzentemperatur	50 °C
Mischzeit	ca. 15 min.

Extrusion, Band 30 x 2 mm	
Geschwindigkeit	3 m/min.
Temperatur Zone 1+2 / Kopf	70 / 70 / 110 °C

Vulkanisation		
Salzbad	3 min. / 200 °C	
VM-3/1220/03.2025		8

Schema Salzbad

Heizplatte 1 EINLEITUNG Salzbad 2 3 Probe EXPERIMENTELLES 3 min. Gewicht und Abstandstücke 4 ERGEBNISSE ZUSAMMENFASSUNG 4) 3) 2 200 °C (1)VM-3/1220/03.2025 9

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

Prüfung	Norm
Härte	DIN ISO 7619-1
Zugfestigkeit	DIN 53 504, S2
Spannungswert 10 bzw. 100 %	DIN 53 504, S2
Reißdehnung	DIN 53 504, S2
Weiterreißwiderstand	DIN ISO 34-1, A
Druckverformungsrest ¹	DIN ISO 815-1, B
Spez. Durchgangswiderstand	DIN IEC 93
Wasseraufnahme	ASTM D 1056

Dicke der Platte, aus der die entsprechenden Probekörper entnommen wurden: 4-5 mm

¹ 2 ausgestanzte Probekörper wurden gestapelt

ERGEBNISSE

Dichte, geschäumt

VM-3/1220/03.2025

Zugfestigkeit

ERGEBNISSE

EINLEITUNG

Reißdehnung

EINLEITUNG

ERGEBNISSE

Spannungswert 100 %

EXPERIMENTELLES

ERGEBNISSE

EINLEITUNG

ERGEBNISSE

Spez. Durchgangswiderstand, 10 V

ERGEBNISSE

Zellstruktur

ERGEBNISSE

Mischungskosten, volumenbezogen NKE vs. N 550

EXPERIMENTELLES

EINLEITUNG

ERGEBNISSE

Mischungskosten, gewichtsbezogen KO NKE vs. N 550

EXPERIMENTELLES

EINLEITUNG

ERGEBNISSE

Fazit

Austausch von Ruß N 550 durch NKE MINERAL

EINLEITUNG

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

• vergleichbare Zellstrukturen

- vergleichbares Spannungswertniveau mit Aktisil PF 216 und Aktifit PF 115 im Zugversuch
- vergleichbarer Druckverformungsrest
- verringerte Wasseraufnahme mit Sillitin Z 86
- teils deutliche Reduzierung der Mischungskosten

nicht leitfähig

klassisch

- vergleichbare Zellstrukturen
- deutliche Erhöhung des elektrischen Widerstands
- annähernd vergleichbares Spannungswertniveau mit Aktisil PF 216 und Aktifit PF 115 im Zugversuch
- deutliche Reduzierung der Mischungskosten, auch mit oberflächenbehandelten NKEs

Wir geben Stoff für gute Ideen!

HOFFMANN MINERAL GmbH Münchener Straße 75 DE-86633 Neuburg (Donau) Telefon: +49 8431 53-0 Internet: www.hoffmann-mineral.de E-Mail: info@hoffmann-mineral.com

Unsere anwendungstechnische Beratung und die Informationen in diesem Bericht beruhen auf Erfahrung und erfolgen nach bestem Wissen und Gewissen, gelten jedoch nur als unverbindlicher Hinweis ohne jede Garantie. Außerhalb unseres Einflusses liegende Arbeits- und Einsatzbedingungen schließen einen Anspruch aus der Anwendung unserer Daten und Empfehlungen aus. Außerdem können wir keinerlei Verantwortung für Patentverletzungen übernehmen, die möglicherweise aus der Anwendung unserer Angaben resultieren.

VM-3/1220/03.2025

Ergebnistabelle

			klassisch					
			N 550	Sillitin P 87	Sillitin Z 86	Sillitin N 75	Aktisil PF 216	Aktifit PF 115
EINLEITUNG	Rheologie							
EXPERIMENTELLES	Mooney Viskosität, ML 1+2, 120 °C	MU	40	41	43	43	45	43
ERGEBNISSE	Mooney Scorch ML +5, 120 °C	min.	5,0	4,6	4,5	4,5	4,4	4,6
ZUSAMMENFASSUNG	Rotorloses Vulkameter M _{max} -M _{min} 200°C	Nm	0,60	0,63	0,64	0,59	0,67	0,65
	Rotorloses Vulkameter V _{max} 200 °C	Nm/min.	1,27	1,25	1,33	1,32	1,31	1,31
ANHANG	Rotorloses Vulkameter t ₉₀ 200 °C	min.	1,1	1,1	1,1	1,1	1,2	1,1
<u>ANHANG</u>	Vulkanisation im Salzbad, 3 min. / 200 °C							
	TUNG Newspace Source Newspace Source Aktisii Aktisii Aktisii Aktisii NIGONE Visikosität, ML 1+2, 120 °C MU 40 Attisii Aktisii Sillitin Aktisii Aktisii MIENTELLES Mooney Visikosität, ML 1+2, 120 °C MU 40 41 43 43 45 43 MIENTELLES ML 45, 120 °C min. 5.0 4.6 4.5 4.4 4.6 MOOREY Scorch min. 5.0 4.6 4.5 4.5 4.4 4.6 MENFASSUNG Me.+5, 120 °C min. 1.27 1.25 1.33 1.32 1.31 1.31 MENFASSUNG Me.max-Mm_200 °C Nm/min. 1.27 1.25 1.33 1.32 1.31 1.31 JO °C Rotorloses Vulkameter Nm /min. 1.1 1.1 1.1 1.1 1.1 1.1 1.1 21 19							
	Härte	Sh. A	23	21	21	19	23	23
	Zugfestigkeit	MPa	2,7	2,2	1,8	1,7	2,3	2,3
	Spannungswert 10 %	MPa	0,12	0,11	0,10	0,09	0,12	0,11
	Spannungswert 100 %	MPa	0,8	0,6	0,6	0,6	0,8	0,8
	Reißdehnung	%	305	311	283	278	281	288
	WRW Streifen	N/mm	2,3	2,0	1,9	1,9	2,0	2,1
	N 550 Sillitin P 87 Sillitin Z 86 Sillitin N 75 Aktisit PF 216 Aktifit PF 115 Rheologie Mooney Viskosität, ML 1+2, 120 °C MU 40 41 43 43 45 43 BLES Mooney Viskosität, ML 1+2, 120 °C MU 40 41 43 43 45 43 SUNG ML 1+2, 120 °C min. 5,0 4,6 4,5 4,5 4,4 4,6 Rotorioses Vulkameter V _{mms} -M _{min} 200 °C Nm 0,60 0,63 0,64 0,59 0,67 0,65 SUNG Rotorioses Vulkameter V _{mas} 200 °C Nm/min. 1,27 1,25 1,33 1,32 1,31 1,31 Rotorioses Vulkameter V _{mas} 200 °C min. 1,1 1,1 1,1 1,1 1,2 1,1 Vulkanisation im Salzbad, 3 min. / 200 °C Vulkanisation im Salzbad, 3 min. / 200 °C 0,49 0,47 0,45 0,51 0,50 Jichte g/cm³ 0,51 0,49 0,47 0,45 0,51 0,50							
	Wasseraufnahme	%	48	50	35	59	50	59
	Spez. Durchgangswiders 10 V (N 550 bei 1 V)	^{.t.} Ω*cm	1,7 x 10 ⁸	6,1 x 10 ⁶	9,2 x 10 ⁶	1,4 x 10 ⁷	8,0 x 10 ⁶	4,0 x 10 ⁶
	VM-3/1220/03.2025							25

		nicht leitfähig					
		Sillitin P 87	Sillitin Z 86	Sillitin N 75	Aktisil PF 216	Aktifi PF 11	it 5
Rheologie							
Mooney Viskosität, ML 1+2, 120 °C	MU	39	42	43	42	41	
Mooney Scorch ML +5, 120 °C	min.	4,9	4,5	4,5	4,5	4,7	
Rotorloses Vulkameter M _{max} -M _{min} 200°C	Nm	0,57	0,60	0,61	0,59	0,58	
Rotorloses Vulkameter V _{max} 200 °C	Nm/min.	1,29	1,28	1,28	1,25	1,28	
Rotorloses Vulkameter t ₉₀ 200 °C	min.	1,3	1,2	1,1	1,2	1,1	
Vulkanisation im Salzbad,	3 min. / 2	00 °C					
Dichte	g/cm³	0,50	0,47	0,49	0,47	0,49)
Härte	Sh. A	20	18	19	19	20	
Zugfestigkeit	MPa	1,8	1,5	1,5	1,7	1,8	
Spannungswert 10 %	MPa	0,11	0,09	0,10	0,10	0,10)
Spannungswert 100 %	MPa	0,6	0,5	0,6	0,7	0,7	
Reißdehnung	%	309	297	279	260	270	
WRW Streifen	N/mm	1,8	1,8	1,8	1,8	1,8	
Druckverformungsrest 22 h / 70 °C, 50 % Def.	%	14	10	12	12	12	
Wasseraufnahme	%	46	49	63	50	44	
Spez. Durchgangswiderst. 10 V	Ω*cm	2,2 x 10 ¹²	1,5 x 10 ¹²	1,6 x 10 ¹²	1,7 x 10 ¹²	1,4 x 1	0 ¹²

EXPERIMENTELLES

ERGEBNISSE

ZUSAMMENFASSUNG

ANHANG